Care of premature infants often requires parental and caregiver separation, particularly during hypoxic and hypothermic episodes. We have established a neonatal rat model of human prematurity involving maternal-neonatal separation and hypoxia with spontaneous hypothermia prevented by external heat. Adults previously exposed to these neonatal stressors show a sex difference in the insulin and glucose response to arginine stimulation suggesting a state of insulin resistance. The current study used this cohort of adult rats to evaluate insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR)], plasma adipokines (reflecting insulin resistance states), and testosterone. The major findings were that daily maternal-neonatal separation led to an increase in body weight and HOMA-IR in adult male and female rats and increased plasma leptin in adult male rats only; neither prior neonatal hypoxia (without or with body temperature control) nor neonatal hypothermia altered subsequent adult HOMA-IR or plasma adiponectin. Adult male-female differences in plasma leptin were lost with prior exposure to neonatal hypoxia or hypothermia; male-female differences in resistin were lost in the adults that were exposed to hypoxia and spontaneous hypothermia as neonates. Exposure of neonates to daily hypoxia without spontaneous hypothermia led to a decrease in plasma testosterone in adult male rats. We conclude that neonatal stressors result in subsequent adult sex-dependent increases in insulin resistance and adipokines and that our rat model of prematurity with hypoxia without hypothermia alters adult testosterone dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00271.2017DOI Listing

Publication Analysis

Top Keywords

insulin resistance
20
adult male
16
maternal-neonatal separation
12
hypoxia spontaneous
12
spontaneous hypothermia
12
adult
9
testosterone adult
8
male female
8
female rats
8
rat model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!