Background: Clinical syndromes associated with West Nile virus (WNV) infection range from fever to neuroinvasive disease. Understanding WNV epidemiology and disease history is important for guiding patient care and healthcare decision-making. The objective of this review was to characterize the existing body of peer-reviewed and surveillance literature on WNV syndromes and summarize epidemiologic and clinical parameters.
Methods: We followed scoping review methodology described by the Joanna Briggs Institute. Terms related to WNV epidemiology, hospitalization, and surveillance were searched in four bibliographic databases (MEDLINE, EMBASE, Scopus, and CINAHL) for literature published from January 1999 to December 2015.
Results: In total, 2334 non-duplicated titles and abstracts were screened; 92 primary studies were included in the review. Publications included one randomized controlled trial and 91 observational studies. Sample sizes ranged from under 25 patients (n = 19) to over 400 patients (n = 28). Eight studies were from Canada, seven from Israel, and the remaining (n = 77) from the United States. N = 17 studies were classified as outbreak case investigations following epidemics; n = 37 with results of regional/national surveillance and monitoring programs. Mean patient ages were > 40 years old; three studies (3%) focused on the pediatric population. Patients with encephalitis fared worse than patients with meningitis and fever, considering hospitalization, length of stay, discharge, recovery, and case-fatality. Several studies examined risk factors; however, age was the only risk factor for neuroinvasive disease/death consistently identified. Overall, patients with acute flaccid paralysis or encephalitis fared worse than patients with meningitis and West Nile fever in terms of hospitalization and mortality. Among the included studies, proportion hospitalized, length of stay, proportion discharged home and case-fatality ranged considerably.
Conclusion: Our review highlights the heterogeneity among reporting clinical WNV syndromes and epidemiologic parameters of WNV-related illness. Presently, there is potential for further synthesis of the risk factors of WNV-illness and mortality; undertaking further analysis through a systematic review and meta-analysis may benefit our understanding of risk factors for emerging mosquito-borne diseases. Future research on the burden of WNV can build on existing evidence summarized in this review, not only to support our understanding of endemic WNV, but also to strengthen research on emerging arboviruses with similar clinical manifestations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588625 | PMC |
http://dx.doi.org/10.1186/s12879-017-2637-9 | DOI Listing |
J Virol
December 2024
1Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.
View Article and Find Full Text PDFAm J Trop Med Hyg
December 2024
Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Usutu virus (USUV) are zoonotic flaviviruses that cause neuroinvasive disease in humans and are maintained in overlapping avian-mosquito transmission cycles. West Nile virus and SLEV cocirculate in the United States, and WNV and USUV cocirculate in Europe.
View Article and Find Full Text PDFAdv Gerontol
January 2025
Bashkir State Medical University, 3 Lenin str., Ufa 450008, Russian Federation, e-mail:
Data accumulated in scientific literature indicate that Parkinson's disease develops after infections caused by SARS-CoV-2, West Nile, Coxsackie, St. Louis viruses, Japanese encephalitis B, hepatitis B and C, influenza A, HIV, herpes viruses, flaviviruses. Neuroinvasive West Nile viruses and HIV activate expression of alpha-synuclein.
View Article and Find Full Text PDFBiodivers Data J
December 2024
University of Notre Dame, Center for Research Computing, Eck Institute for Global Health, and Department of Biological Sciences, Notre Dame, United States of America University of Notre Dame, Center for Research Computing, Eck Institute for Global Health, and Department of Biological Sciences Notre Dame United States of America.
Background: Approximately twenty-one years of historical mosquito abundance and species surveillance data, collected by the University of Notre Dame and the St. Joseph County (IN) Health Department, from 1976 to 1997 are made available following a data rescue effort. St.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:
The NS1 protein of nine mosquito-borne flaviviruses, including Dengue virus 1-4, Japanese encephalitis virus, West Nile virus, Yellow fever virus, Tembusu virus, and Zika virus, shows distinct codon usage and evolutionary traits. Codon usage analysis shows notable base composition bias and non-conservatism in NS1, with distinct evolutionary traits from its ORF. Analysis of relative synonymous codon usage (RSCU) indicates that the NS1 genes exhibit non-conservative RSCU patterns within different mosquito-borne pathogenic flaviviruses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!