Following injury to the central nervous system, secondary degeneration is mediated by Ca2+ imbalances and overproduction of reactive oxygen species from mitochondria, and is associated with myelin deficits and loss of function. Preventing intracellular Ca2+ influx at the acute phase of injury is a potential strategy for limiting these deficits and preserving function. The use of single ion channel inhibitors has had little success in attenuating morphological and functional deficits, potentially due to the many pathways by which calcium can traverse the cell membrane. Focus has shifted to the simultaneous administration of a combination of ion channel inhibitors: lomerizine, oxATP, and YM872. The combination has resulted in reductions in oxidative damage, as well as preservation of function and myelin ultrastructure, potentially due to the protection of oligodendrocytes and their progenitors. The use of multiple ion channel inhibitors is promising and suggests a reduction in total intracellular Ca2+ influx is necessary and sufficient for the protection of neurons and glia following neurotrauma. Optimization of treatment timing, inhibitor choice, and method of delivery will be required for translation of this strategy to the clinic.
Download full-text PDF |
Source |
---|
Curr Opin Chem Biol
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India; Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India. Electronic address:
Animal venom contains ion channel-targeting peptide toxins that inflict paralysis or pain. The high specificity and potency of these toxins for their target ion channels provides enticing opportunities for their deployment as tools in channel biology. Mechanistic studies on toxin-mediated ion channel modulation have yielded landmark breakthroughs in our understanding of channel architectures and gating mechanisms.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:
Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.
Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, U.K.
Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable force field AMOEBA in MD simulations on different conformations of hBest1.
View Article and Find Full Text PDFBiophys Chem
December 2024
Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Group, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!