The P-glycoprotein (P-gp) substrate MC225, at concentrations ≤10 nM, is a valuable radiotracer for positron emission tomography imaging of P-gp function in rats and mice. The aim of this study was to evaluate its potential toxic hazard toward the cardiovascular system through an in-depth analysis of its effects on rat aorta rings, on CaV1.2 channel current (ICa1.2) of A7r5 cells and on Langendorff-perfused rat heart. In aortic rings, MC225 relaxed phenylephrine-induced contraction in a concentration-dependent and endothelium-independent manner, with an IC50 value of about 1 μM. At concentrations ≥3 μM, it antagonized the response to cumulative concentrations of K. MC225, 1 and 10 μM, inhibited ICa1.2 by 15% and 31%, respectively, without affecting either current activation or inactivation kinetics. In Langendorff-perfused rat hearts, only 10 μM MC225 significantly decreased left ventricular pressure and increased coronary perfusion pressure while reducing heart rate and prolonging the cardiac cycle length as well as the atrioventricular conduction time (PQ interval) on the electrocardiogram. Lower concentrations of the drug were ineffective. These findings demonstrate that MC225-induced cardiovascular effects took place at concentrations that are at least 2 orders of magnitude higher than those allowing in vivo measurement of P-gp function. Therefore, MC225 represents a promising positron emission tomography tool for in vivo straightforward P-gp quantification.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000000536DOI Listing

Publication Analysis

Top Keywords

positron emission
8
emission tomography
8
p-gp function
8
langendorff-perfused rat
8
mc225
6
concentrations
5
mc225 novel
4
novel probe
4
probe p-glycoprotein
4
p-glycoprotein pet
4

Similar Publications

Background: The epidemiology and characteristics of cardiac involvement in patients with pulmonary sarcoidosis remain unclear. We aimed to determine the prevalence, incidence, and clinical features of cardiac sarcoidosis in patients with pulmonary sarcoidosis.

Methods: The characteristics of patients with biopsy-proven pulmonary sarcoidosis were retrospectively evaluated.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is pathologically marked by tau tangles and beta-amyloid (Aβ) plaques. It has been hypothesized that Aβ facilitates spread of tau outside of the medial temporal lobe (MTL), but exact mechanism of this facilitation remains unclear. We aimed to test the hypothesis that abnormal Aβ induces an increase in inter-network functional connectivity, which in turn induces early-stage tau elevation in limbic network.

View Article and Find Full Text PDF

PET Reporter Probes for Brain Imaging of Transduced Gene and Cell Expression: Status and Challenges.

J Med Chem

January 2025

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States.

Article Synopsis
  • Gene therapy and cell transduction are emerging as promising treatments for neurological and psychiatric disorders, with PET imaging playing a key role in assessing treatment effectiveness.
  • The success of PET imaging relies on the creation of specific radiotracers that can identify exogenous transgenes or modified cells in the brain, potentially eliminating the need for invasive procedures.
  • This article discusses the current state and challenges in developing PET probes for monitoring gene therapy and cellular interventions, highlighting the importance of radiochemical development and practical applications in a clinical setting.
View Article and Find Full Text PDF

Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!