In the design of small molecule receptors for polar guests, much inspiration has been taken from proteins that have adapted effective ways to selectively bind polar molecules in aqueous environments. Nonetheless, molecular recognition of hydrophilic guests in water by synthetic receptors remains a challenging task. Here we report a new synthetic receptor, A2I, with improved affinity and selectivity for a biologically important polar guest, dimethyllysine (Kme2). A2I was prepared via redesign of a small molecule receptor (A2B) that preferentially binds trimethyllysine (Kme3) using dynamic combinatorial chemistry (DCC). We designed a new biphenyl-2,6-dicarboxylate monomer, I, with the goal of creating a buried salt bridge with Kme2 inside a synthetic receptor. Indeed, incorporation of I into the receptor A2I resulted in a receptor with 32-fold enhancement in binding affinity, which represents the highest affinity receptor for Kme2 in the context of a peptide to date and is tighter than most Kme2 reader proteins. It also exhibits a ∼2.5-fold increase in preference for Kme2 vs. Kme3 relative to the parent receptor, A2B. This work provides insight into effective strategies for binding hydrophilic, cationic guests in water and is an encouraging result toward a synthetic receptor that selectively binds Kme2 over other methylation states of lysine.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ob01921aDOI Listing

Publication Analysis

Top Keywords

synthetic receptor
16
guests water
12
receptor
9
recognition hydrophilic
8
hydrophilic guests
8
small molecule
8
receptor a2i
8
receptor a2b
8
kme2
6
optimization synthetic
4

Similar Publications

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Large library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines.

View Article and Find Full Text PDF

The Role of Structural Flexibility in Hydrocarbon-Stapled Peptides Designed to Block Viral Infection via Human ACE2 Mimicry.

Pept Sci (Hoboken)

November 2024

Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.

The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.

View Article and Find Full Text PDF

Cyclaniliprole, a type of the third-generation anthranilic diamide insecticide, was mainly used for management of various pests. Myzus persicae (Hemiptera: Aphididae), known as the peach-potato aphid, is an economically essential pest with worldwide distribution. However, the risk assessment of cyclaniliprole in M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!