Tissue-specific self-assembling peptide (SAP) hydrogels designed based on biologically relevant peptide sequences have great potential in regenerative medicine. These materials spontaneously form 3D networks of physically assembled nanofibres utilising non-covalent interactions. The nanofibrous structure of SAPs is often compared to that of electrospun scaffolds. These electrospun nanofibers are produced as sheets that can be engineered from a variety of polymers that can be chemically modified to incorporate many molecules including drugs and growth factors. However, their macroscale morphology limits them to wrapping and bandaging applications. Here, for the first time, we combine the benefits of these systems to describe a two-component composite scaffold from these biomaterials, with the design goal of providing a hydrogel scaffold that presents 3D structures, and also has temporal control over drug delivery. Short fibres, cut from electrospun scaffolds, were mixed with our tissue-specific SAP hydrogel to provide a range of nanofibre sizes found in the extracellular matrix (10-300 nm in diameter). The composite material maintained the shear-thinning and void-filling properties of SAP hydrogels that have previously been shown to be effective for minimally invasive material injection, cell delivery and subsequent in vivo integration. Both scaffold components were separately loaded with growth factors, important signaling molecules in tissue regeneration whose rapid degradation limits their clinical efficacy. The two biomaterials provided sequential growth factor delivery profiles: the SAP hydrogel provided a burst release, with the release rate decreasing over 12 hours, while the electrospun nanofibres provided a more constant, sustained delivery. Importantly, this second release commenced 6 days later. The design rules established here to provide temporally distinct release profiles can enable researchers to target specific stages in regeneration, such as the acute immune response versus sustained protection and survival of cells following injury. In summary, this novel composite material combines the physical advantages of SAP hydrogels and electrospun nanofibres, while additionally providing a superior vehicle for the stabilisation and controlled delivery of growth factors necessary for optimal tissue repair.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr05004fDOI Listing

Publication Analysis

Top Keywords

sap hydrogels
12
growth factors
12
growth factor
8
factor delivery
8
self-assembling peptide
8
composite scaffold
8
electrospun scaffolds
8
sap hydrogel
8
composite material
8
electrospun nanofibres
8

Similar Publications

Unveiling Interactions between Self-Assembling Peptides and Neuronal Membranes.

Langmuir

December 2024

Center for Nanomedicine and Tissue Engineering (CNTE), A.S.S.T. Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, Milan 20162, Italy.

The use of self-assembling peptide hydrogels in the treatment of spinal cord and brain injuries, especially when combined with adult neural stem cells, has shown great potential. To advance tissue engineering, it is essential to understand the effect of mechanochemical signaling on cellular differentiation. The elucidation of the molecular interactions at the level of the neuronal membrane still represents a promising area of investigation for many drug delivery and tissue engineering applications.

View Article and Find Full Text PDF

Traditional coal spontaneous combustion (CSC) inhibitors, while effective, have limitations such as frequent application or short-term efficacy. To this end, we developed a slow-release and water-soluble synergistic inhibitor (SWSI) to achieve long-term CSC inhibition. The SWSI was formulated by integrating synergistic antioxidants (SA) composed of ascorbic acid (AsA) and Fe-superoxide dismutase (Fe-SOD) dissolved in a super absorbent polymer (SAP) encapsulated within hydrogel microcapsules.

View Article and Find Full Text PDF

Flame retardant (FR) finishing is crucial for developing protective textiles, traditionally relying on halogen, phosphorus, and phosphorus-nitrogen chemistries, which have limitations like toxicity and fabric stiffening. Innovative approaches such as nanotechnology, plasma treatments, and natural resource-based finishes are being explored to achieve sustainable FR textiles. This study presents the development and comprehensive characterization of hydrogel composites made from nonwoven fabrics composed of various hemp/wool blends (70/30, 80/20, and 90/10).

View Article and Find Full Text PDF

The avascular structure and low cell migration to the damaged area due to the low number of cells do not allow spontaneous repair of the articular cartilage tissue. Therefore, functional scaffolds obtained from biomaterials are used for the regeneration of cartilage tissue. Here, we functionalized one of the self-assembling peptide (SAP) scaffolds KLD (KLDLKLDLKLDL) with short bioactive motifs, which are the α1 chain of type II collagen binding peptide WYRGRL (C1) and the triple helical collagen mimetic peptide GFOGER (C2) by direct coupling.

View Article and Find Full Text PDF

Fungal Enzyme-Responsive Hydrogel Drug Delivery Platform for Triggered Antifungal Release.

Adv Healthc Mater

December 2024

School Of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, 184 Hope Street, Providence, RI, 02912, USA.

Fungal infections can lead to debilitating consequences if they are not treated effectively. Antifungal drugs used to treat these infections can be toxic and overuse contributes to growing antifungal resistance. Candida spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!