Ten phenanthrenes, two organic acids, one organic acid ester and one flavonoid were isolated from the aerial part of Juncus setchuensis by various chromatographic techniques usingsilica gel, polyamide, Sephadex LH-20 as solid phases, and preparative HPLC. Their structures were identified by MS and NMR spectroscopic data as effusol(1), juncusol(2), juncuenin D(3), dehydroeffusol(4), dehydrojuncusol(5), juncuenin B(6),dehydrojuncuenin B(7), 2-methoxyl-7-hydroxyl-1-methyl-5-vinyl phenanthrene(8), 2-hydroxyl-7-carboxy-1-methyl-5-vinyl-9,10-dihydrophenanthrene(9), 2-hydroxyl-7-carboxyl-1-methyl-5-vinylphenanthrene(10), luteolin(11), vanillic acid(12), daphnetin(13), p-coumaric acid(14), respectively. Compound 13 was isolated from the genus Juncus for the first time and compounds 5, 8-12 were isolated from J. setchuensis for the first time. The elevated plus-maze(EPM) was used to evaluate the anxiolytic activity of compounds 6 and 7. Compound 6 at 5 mg•kg⁻¹ and 10 mg•kg⁻¹ showed anxiolytic activity as well as compound 7 at 10 mg•kg⁻¹ and 20 mg•kg⁻¹.

Download full-text PDF

Source
http://dx.doi.org/10.4268/cjcmm20160616DOI Listing

Publication Analysis

Top Keywords

aerial juncus
8
juncus setchuensis
8
anxiolytic activity
8
compound mg•kg⁻¹
8
mg•kg⁻¹ mg•kg⁻¹
8
[phenanthrenes aerial
4
setchuensis anxiolyticactivity]
4
anxiolyticactivity] ten
4
ten phenanthrenes
4
phenanthrenes organic
4

Similar Publications

Phytostabilization of metal(loid)s by ten emergent macrophytes following a 90-day exposure to industrially contaminated groundwater.

N Biotechnol

March 2024

International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain. Electronic address:

Better understanding of macrophyte tolerance under long exposure times in real environmental matrices is crucial for phytoremediation and phytoattenuation strategies for aquatic systems. The metal(loid) attenuation ability of 10 emergent macrophyte species (Carex riparia, Cyperus longus, Cyperus rotundus, Iris pseudacorus, Juncus effusus, Lythrum salicaria, Menta aquatica, Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) was investigated using real groundwater from an industrial site, over a 90-day exposure period. A "phytobial" treatment was included, with 3 plant growth-promoting rhizobacterial strains.

View Article and Find Full Text PDF

Hypersaline environments occur naturally worldwide in arid and semiarid regions or in artificial areas where the discharge of highly saline wastewaters, such as produced water (PW) from oil and gas industrial setups, has concentrated salt (NaCl). Halophytes can tolerate high NaCl concentrations by adopting ion extrusion and inclusion mechanisms at cell, tissue, and organ levels; however, there is still much that is not clear in the response of these plants to salinity and completely unknown issues in hypersaline conditions. Mechanisms of tolerance to saline and hypersaline conditions of four different halophytes ( (L.

View Article and Find Full Text PDF

Halophytes residing in metal-contaminated saltmarsh habitats may employ strategies to enhance fitness of the next generation. We aimed to test the hypothesis that Juncus acutus individuals inhabiting metal-contaminated locations would experience elevated tolerance of offspring to metals compared to plants residing in locations with no metal contamination history. J.

View Article and Find Full Text PDF

A paradigm shift in the quantification of wave energy attenuation due to saltmarshes based on their standing biomass.

Sci Rep

August 2022

Instituto de Hidráulica Ambiental de la Universidad de Cantabria (IHCantabria), Isabel Torres 15, 39011, Santander, Spain.

Most existing analytical and numerical models to quantify wave energy attenuation attributed to saltmarshes are based on the definition of a drag coefficient that varies with vegetation and wave characteristics and requires calibration, i.e., a case-specific variable.

View Article and Find Full Text PDF

Phytoremediation of potentially toxic elements using constructed wetlands in coastal areas with a mining influence.

Environ Geochem Health

April 2021

Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.

This paper proposes the use of wetlands as a phytoremediation strategy for areas of mining and maritime influence in the southeast of Spain. Potentially toxic elements (PTEs) tolerant and salinity-resistant macrophytes (Phragmites australis, Juncus effusus and Iris pseudacorus) have been used. The experiment is carried out in an aerobic artificial wetland using representative sediments affected by mining activities in the study area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!