The biodiversity cost of carbon sequestration in tropical savanna.

Sci Adv

Laboratório de Ecologia e Hidrologia Florestal, Floresta Estadual de Assis, Instituto Florestal, Assis, São Paulo 19802-970, Brazil.

Published: August 2017

Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha year since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576881PMC
http://dx.doi.org/10.1126/sciadv.1701284DOI Listing

Publication Analysis

Top Keywords

fire suppression
16
carbon sequestration
12
tropical savannas
8
carbon stocks
8
brazilian cerrado
8
richness declined
8
carbon
6
biodiversity
5
fire
5
biodiversity cost
4

Similar Publications

In brain activity mapping with optogenetics, patterned illumination is crucial for targeted neural stimulation. However, due to optical scattering in brain tissue, light-emitting implants are needed to bring patterned illumination to deep brain regions. A promising solution is silicon neural probes with integrated nanophotonic circuits that form tailored beam patterns without lenses.

View Article and Find Full Text PDF

Recent Advances in Fire Safety of Carbon Fiber-Reinforced Epoxy Composites for High-Pressure Hydrogen Storage Tanks.

Polymers (Basel)

November 2024

Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea.

The increasing use of hydrogen as a clean energy carrier has underscored the necessity for advanced materials that can provide safe storage under extreme conditions. Carbon fiber-reinforced epoxy (CFRP) composites are increasingly utilized in various high-performance applications, including automotive, aerospace, and particularly hydrogen storage tanks, due to their exceptional strength-to-weight ratio, durability, excellent corrosion resistance, and low thermal conductivity. However, the inherent flammability of epoxy matrices poses significant safety concerns, particularly in hydrogen storage, where safety is paramount.

View Article and Find Full Text PDF

Characterization of PFAS residuals: A case study on PFAS content in a firefighting foam delivery system of an aircraft rescue and firefighting vehicle.

Chemosphere

December 2024

Arcadis G&M of North Carolina, Inc., 175 Regency Woods Place, Suite 400, Cary, NC, 27518, USA. Electronic address:

When fire suppression systems that held aqueous film forming foams (AFFF) are transitioned to per- and polyfluoroalkyl substance (PFAS)-free firefighting formulations, PFAS can dissolve from the wetted surfaces of the systems and release into the new firefighting formulations. The overall objective of this work was to characterize PFAS residual mass on the wetted surfaces of aircraft rescue and firefighting (ARFF) vehicle on-board fire suppression system components from the water, mixed fire water, and foam concentrate systems with various geometries, materials of construction, and locations within the fire suppression system. The ARFF vehicle components were dismantled from the system after a triple water rinse procedure which removed 19,600 mg total measured PFAS post-TOP assay from the foam concentrate system and 23 mg total measured PFAS post-TOP assay from the water system.

View Article and Find Full Text PDF

The effect of wildfires on asthma and allergies.

J Allergy Clin Immunol Pract

December 2024

Department of Environmental Health, Harvard T. H. Chan. School of Public Health, Boston, MA. Electronic address:

Climate change is a major driver of the frequency and severity of wildfires due to extended periods of drought and hotter, drier weather superimposed on the legacy of fire suppression in the Mountain West of the U.S. In recent years, increased wildfire smoke is negating the improvements in air quality made by clean energy transitions.

View Article and Find Full Text PDF

Wildland fire-atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!