MicroRNAs, small non-coding elements implied in gene regulation, are very interesting biomarkers for various diseases such as cancers. They represent potential prodigious biotechnologies for early diagnosis and gene therapies. However, experimental verification of microRNA-disease associations are time-consuming and costly, so that computational modeling is a proper solution. Previously, we designed MiRAI, a predictive method based on distributional semantics, to identify new associations between microRNA molecules and human diseases. Our preliminary results showed very good prediction scores compared to other available methods. However, MiRAI performances depend on numerous parameters that cannot be tuned manually. In this study, a parallel evolutionary algorithm is proposed for finding an optimal configuration of our predictive method. The automatically parametrized version of MiRAI achieved excellent performance. It highlighted new miRNA-disease associations, especially the potential implication of mir-188 and mir-795 in various diseases. In addition, our method allowed to detect several putative false associations contained in the reference database.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585369 | PMC |
http://dx.doi.org/10.1038/s41598-017-10065-y | DOI Listing |
BMC Genom Data
January 2025
Department of Management Information Systems, National Chung Hsing University, Taichung, 402, Taiwan.
Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
School of Computer and Information Science, Hunan Institute of Technology, Hengyang 412002, Hunan, China.
Sci Rep
January 2025
College of Information Science Technology, Hainan Normal University, Haikou, 571158, China.
MiRNAs and lncRNAs are two essential noncoding RNAs. Predicting associations between noncoding RNAs and diseases can significantly improve the accuracy of early diagnosis.With the continuous breakthroughs in artificial intelligence, researchers increasingly use deep learning methods to predict associations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electricity and Energy, Selcuk University, Konya, Turkey.
microRNAs (miRNAs) are non-coding RNA molecules that influence the development and progression of many diseases. Research have documented that miRNAs have a significant role in the prevention, diagnosis, and treatment of complex human diseases. Recently, scientists have devoted extensive resources to attempting to find the connections between miRNAs and diseases.
View Article and Find Full Text PDFBMC Bioinformatics
December 2024
Electronic Information, Xijing University, Xi'an, 710123, China.
Background: As a key non-coding RNA molecule, miRNA profoundly affects gene expression regulation and connects to the pathological processes of several kinds of human diseases. However, conventional experimental methods for validating miRNA-disease associations are laborious. Consequently, the development of efficient and reliable computational prediction models is crucial for the identification and validation of these associations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!