Human cytomegalovirus (HCMV) is the prototypical human β-herpes virus. Here we perform a systems analysis of the HCMV host-cell transcriptome, using gene set enrichment analysis (GSEA) as an engine to globally map the host-pathogen interaction across two cell types. Our analysis identified several previously unknown signatures of infection, such as induction of potassium channels and amino acid transporters, derepression of genes marked with histone H3 lysine 27 trimethylation (H3K27me3), and inhibition of genes related to epithelial-to-mesenchymal transition (EMT). The repression of EMT genes was dependent on early viral gene expression and correlated with induction E-cadherin (CDH1) and mesenchymal-to-epithelial transition (MET) genes. Infection of transformed breast carcinoma and glioma stem cells similarly inhibited EMT and induced MET, arguing that HCMV induces an epithelium-like cellular environment during infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625929PMC
http://dx.doi.org/10.1073/pnas.1710799114DOI Listing

Publication Analysis

Top Keywords

human cytomegalovirus
8
infection induction
8
mesenchymal-to-epithelial transition
8
transition met
8
cellular responses
4
responses human
4
infection
4
cytomegalovirus infection
4
induction mesenchymal-to-epithelial
4
met phenotype
4

Similar Publications

Background: Kidney transplant (KT) recipients at intermediate risk for cytomegalovirus (CMV) infection constitute a potential target for individualized prevention strategies informed by the CMV-specific cell-mediated immunity (CMV-CMI). The optimal method for the functional assessment of CMV-CMI in this group remains unclear.

Methods: We included 74 CMV-seropositive KT recipients that did not receive T-cell-depleting induction and were managed by preemptive therapy.

View Article and Find Full Text PDF

Background: Cytomegalovirus (CMV) infection remains among the leading complications after solid organ transplantation (SOT). Large international surveys mainly focused on high-income countries, detected considerable variability in the management of this infection after SOT. Limited data are available from resource-limited settings.

View Article and Find Full Text PDF

Infections Management in the Lung Transplant Setting in Italy: A Web-Survey.

Transpl Infect Dis

January 2025

Unit of Infectious Diseases and Infection Control, ISMETT-IRCCS Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy.

Introduction: Infections significantly impact morbidity and mortality in lung transplant (LuTx) recipients. This survey focused on documenting current practices regarding the prevention and management of infections in LuTx in Italy.

Methods: A 52-question survey was administered online in the period from December 1, 2023, to January 31, 2024, assessing center characteristics, Tx team organization, microbiological investigations, infection prevention, and management.

View Article and Find Full Text PDF

Unlabelled: Cytomegalovirus (CMV) is a human herpes virus with a worldwide seroprevalence of 60-100%, mainly known to cause severe life-threatening disease in immunocompromised patients. In immunocompetent hosts (IMCh), CMV causes a self-limiting mononucleosis-like infection, and severe pictures are less recognized. We report a case of a previously healthy 62-year-old woman evaluated in the Internal Medicine outpatient clinic for 3 weeks of progressive fatigue, generalised inflammatory arthralgias, hypogastric discomfort and daily persistent fever.

View Article and Find Full Text PDF

Metagenomic analysis identifying a polymicrobial pulmonary infection in a non-HIV immunocompromised patient: a case report.

BMC Pulm Med

January 2025

Central Laboratory, Liaocheng People's Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, Shandong, 252000, China.

Background: Polymicrobial pulmonary infections, common in immunocompromised patients, often manifest more severe symptoms than monomicrobial infections. Clinical diagnosis delays may lead to mortality, emphasizing the importance of fast and accurate diagnosis for these patients. Metagenomic next-generation sequencing (mNGS), as an unbiased method capable of detecting all microbes, is a valuable tool to identify pathogens, particularly in cases where infections are difficult to diagnosis using conventional methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!