Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystalline array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617308 | PMC |
http://dx.doi.org/10.1073/pnas.1711207114 | DOI Listing |
Small
July 2024
CAS Key Laboratory of Bioinspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Liquid crystalline blue phase (BP) with 3D cubic nanostructure has attracted much interest in the fields of photonic crystals due to their unique optical properties and the ability to control the flow of light. However, there remains a challenge for simultaneously achieving self-assembly and mechanochromic response of soft 3D cubic nanostructures. Herein, a scalable strategy for the preparation of soft 3D cubic nanostructured films using oligomerization of the Michael addition reaction, which can induce the assembly of double-twisted cylinders for collective replication, remodeling, recombination, and growth, with a phase transition from BPII to BPI, and to chiral nematic phase, is presented.
View Article and Find Full Text PDFLangmuir
February 2022
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
Studying the flow-induced alignment of anisotropic liquid crystalline materials is of major importance in the 3D printing of advanced architectures. However, in situ characterization and quantitative measurements of local orientations during the 3D printing process are challenging. Here, we report a microfluidic strategy integrated with polarized optical microscopy (POM) to perform the in situ characterization of the alignment of cellulose nanocrystals (CNCs) under the shear-flow condition of the 3D printer's nozzle in the direct ink writing process.
View Article and Find Full Text PDFNat Commun
June 2021
CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
In a narrow temperature window in going from the isotropic to highly chiral orders, cholesteric liquid crystals exhibit so-called blue phases, consisting of different morphologies of long, space-filling double twisted cylinders. Those of cubic spatial symmetry have attracted considerable attention in recent years as templates for soft photonic materials. The latter often requires the creation of monodomains of predefined orientation and size, but their engineering is complicated by a lack of comprehensive understanding of how blue phases nucleate and transform into each other at a submicrometer length scale.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
Engineering useful mechanical properties into stimuli-responsive soft materials without compromising their responsiveness is, in many cases, an unresolved challenge. For example, polymer networks formed within blue-phase liquid crystals (BPs) have been shown to form mechanically robust films, but the impact of polymer networks on the response of these soft materials to chemical stimuli has not been explored. Here, we report on the response of polymer-stabilized BPs (PSBPs) to volatile organic compounds (VOCs, using toluene as a model compound) and compare the response to BPs without polymer stabilization and to polymerized nematic and cholesteric phases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2017
Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637;
Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!