The Late Quaternary glacial-interglacial transitions represent the highest amplitude climate changes over the last million years. Unraveling the sequence of events and feedbacks at Termination III (T-III), including potential abrupt climate reversals similar to those of the last Termination, has been particularly challenging due to the scarcity of well-dated records worldwide. Here, we present speleothem data from southern Europe covering the interval from 262.7 to 217.9 kyBP, including the transition from marine isotope stage (MIS) 8 to MIS 7e. High-resolution δC, δO, and Mg/Ca profiles reveal major millennial-scale changes in aridity manifested in changing water availability and vegetation productivity. uranium-thorium dates provide a solid chronology for two millennial-scale events (S8.1 and S8.2) which, compared with the last two terminations, has some common features with Heinrich 1 and Heinrich 2 in Termination I (T-I).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617243 | PMC |
http://dx.doi.org/10.1073/pnas.1619615114 | DOI Listing |
PLoS One
December 2024
Department of Biology, University of Oxford, Oxford, United Kingdom.
Previous research indicates that African savanna elephants change their movements preceding or coincident with local rainfall and it has been suggested that they respond to thunder in remote storms-perhaps reading seismic cues. We therefore aimed to test if elephants in Northern Kenya adhere to distinct daytime movement states between the wet and dry periods, and whether their abrupt movement changes precede local wet periods in response to lightning strikes from a specific compass heading. In our study site, lightning to the North and East often preceded local rainfall and could possibly be used to anticipate local wet periods, but local rainfall appears a more likely trigger of behavioural change.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking.
View Article and Find Full Text PDFJ Insect Sci
November 2024
College of Animal Science, Guizhou University, Guiyang, China.
The beet webworm (BWW), Loxostege sticticalis (L.), is a notorious migratory agriculture pest of crops and fodder plants, inducing sudden outbreaks and huge losses of food and forage production. Quantifying its spatiotemporal patterns and possible dynamics under future climate scenarios may have significant implications for management policies and practices against this destructive agriculture pest.
View Article and Find Full Text PDFEnviron Pollut
December 2024
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
Dual-carbon policies were implemented by Chinese government to mitigate climate warming; however, changes in aerosol optical depth (AOD) during early phases of these actions (2020-2022) remain unclear. Thus, AOD variations during this period were investigated compared to the baseline (2015-2019 mean) across seven urban agglomerations (UAs) using multi-source data. Significant temporal variations in AOD anomalies (ΔAOD) were observed at annual and seasonal scales, with varying magnitudes.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, Valencia, Spain.
Nature based solutions (NbS) for flood regulation (e.g., forest restoration) need to be informed by the analysis of climate change and land-use/cover change (LUCC) effects on floods, but these effects are still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!