The regulation of AMH production by follicular cells is poorly understood. The purpose of this study was to determine the role of the oocyte-secreted factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on AMH production in primary human cumulus cells. Cumulus cells from IVF patients were cultured with a combination of GDF9, BMP15, recombinant FSH and specific signaling inhibitors. Stimulation with GDF9 or BMP15 separately had no significant effect on mRNA levels. In contrast, simultaneous stimulation with GDF9 and BMP15 (G + B) resulted in a significant increase in mRNA expression. Increasing concentration of G + B (0.6, 2.5, 5 and 10 ng/mL) stimulated AMH in a dose-dependent manner, showing a maximal effect at 5 ng/mL. Western blot analyses revealed an average 16-fold increase in AMH protein levels in cells treated with G + B when compared to controls. FSH co-treatment decreased the stimulation of AMH expression by G + B. The stimulatory effect of G + B on the expression of AMH was significantly decreased by inhibitors of the SMAD2/3 signaling pathway. These findings show for the first time that AMH production is regulated by oocyte-secreted factors in primary human cumulus cells. Moreover, our novel findings establish that the combination of GDF9 + BMP15 potently stimulates AMH expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665699 | PMC |
http://dx.doi.org/10.1530/REP-17-0421 | DOI Listing |
Cell Commun Signal
January 2025
Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
Background: Although the Notch signaling pathway is known to play an important role in ovarian follicle development in mammals, whether it is involved in oocyte maturation remains unclear. Therefore, this study was performed to elucidate the existence and role of the Notch signaling pathway during oocyte maturation in a porcine model.
Methods: Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical assays were used to determine the existence of Notch signaling pathway-related transcripts and proteins in porcine cumulus-oocyte complexes (COCs).
Nicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H).
View Article and Find Full Text PDFAdv Anat Embryol Cell Biol
January 2025
Laboratory of Molecular Morphophysiology and Development, Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil.
In this chapter, we explore the multifaceted roles of extracellular vesicles (EVs) in ovarian biology, focusing on their contributions to folliculogenesis, oocyte competence, corpus luteum function, and immune response regulation. EVs, particularly those derived from follicular fluid (ffEVs), are crucial mediators of cell-to-cell communication within the ovarian follicle, influencing processes such as meiotic progression, stress response, and hormonal regulation. We review preexisting literature, highlighting key findings on the molecular cargo of EVs, such as miRNAs and proteins, and their involvement in regulating the function of the follicle cells.
View Article and Find Full Text PDFF S Sci
December 2024
The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA. Electronic address:
Theriogenology
December 2024
Universidade Federal de Mato Grosso (UFMT) campus Cuiabá, Avenida Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, 78060-900, Brazil; Programa de Pós-Graduação Stricto Sensu em Biociência Animal, Universidade de Cuiabá (UNIC), Avenida Manoel José de Arruda, 3100, Jardim Europa, Cuiabá, 78065-900, Brazil. Electronic address:
This study aimed to evaluate the impact of cholesterol supplementation at various concentrations in cryopreserved Pantaneiro bovine semen on in vitro embryo production (IVEP). Grade I and II cumulus-oocyte complexes (COCs) were collected from ovaries retrieved from a commercial slaughterhouse and matured in vitro for 24 h. The matured COCs were divided into four groups based on the concentration of cholesterol -loaded cyclodextrin (CLC) during semen cryopreservation from a Pantaneiro breed bull: Control (C) - 0 mg/mL CLC, T1 - 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!