A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

β-Arrestin2 Improves Post-Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca-ATPase-Dependent Positive Inotropy in Cardiomyocytes. | LitMetric

β-Arrestin2 Improves Post-Myocardial Infarction Heart Failure via Sarco(endo)plasmic Reticulum Ca-ATPase-Dependent Positive Inotropy in Cardiomyocytes.

Hypertension

From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.).

Published: November 2017

Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing βAR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca-ATPase) in vivo and in vitro in a βAR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize βAR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09817DOI Listing

Publication Analysis

Top Keywords

heart failure
16
cardiac function
16
cardiac βarr2
12
cardiac
10
post-myocardial infarction
8
βarr2
8
cardiac contractility
8
post-mi heart
8
gene transfer
8
heart
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!