As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton () crossed with high-quality Sea Island cotton (). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase ()], XLOC_029945 (), and XLOC_075372 (), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633395 | PMC |
http://dx.doi.org/10.1534/g3.117.300108 | DOI Listing |
J Funct Morphol Kinesiol
January 2025
Open Source Medicine OÜ, 6-15 13517 Talinn, Estonia.
: Age-related decline in musculoskeletal function is a significant concern, particularly in Western countries facing demographic shifts and increased healthcare demands. This review examines the typical trajectories of musculoskeletal deterioration with age and evaluates the effectiveness of various interventions in preventing or reversing these changes. : The review analyzes documented rates of decline across multiple parameters, including muscle mass, Type II muscle fiber reduction, and decreased motor unit firing rates.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
3D disordered fibrous network structures (3D-DFNS), such as cytoskeletons, collagen matrices, and spider webs, exhibit remarkable material efficiency, lightweight properties, and mechanical adaptability. Despite their widespread in nature, the integration into engineered materials is limited by the lack of study on their complex architectures. This study addresses the challenge by investigating the structure-property relationships and stability of biomimetic 3D-DFNS using large datasets generated through procedural modeling, coarse-grained molecular dynamics simulations, and machine learning.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; College of Chemical Engineering and Technology, Yantai Nanshan University, Yantai 265713, China. Electronic address:
The contamination of water resources by selenium (Se), particularly in the highly toxic Se(IV) oxidation state, poses a significant environmental and public health concern due to its detrimental impacts on humans and aquatic ecosystems. In this work, we report a novel composite foam (CFC) by incorporating chitosan (CS), cellulose nanofibers (CNF) and iron oxyhydroxide (FeOOH) nanoparticles through a one-pot fabrication process. The CFC foam features a three-dimensional porous structure, conferring both exceptional mechanical strength and superior adsorption performance for Se(IV), with a maximum equilibrium adsorption capacity of 90 mg/g achieved within 3 h.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China. Electronic address:
The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!