is a major causative agent of both acute and chronic infections. Although aminoglycoside antibiotics are very potent drugs against such infections, antibiotic failure is steadily increasing mainly because of increasing resistance of the bacteria. Many molecular mechanisms that determine resistance, such as acquisition of genes encoding aminoglycoside-inactivating enzymes or overexpression of efflux pumps, have been elucidated. However, there are additional, less well-described mechanisms of aminoglycoside resistance. In this study, we profiled a clinical tobramycin-resistant strain that exhibited a small-colony variant (SCV) phenotype. Both the resistance and colony morphology phenotypes were lost upon passage of the isolate under rich medium conditions. Transcriptional and mutational profiling revealed that the SCV harbored activating mutations in the two-component systems AmgRS and PmrAB. Introduction of these mutations individually into type strain PA14 conferred tobramycin and colistin resistance, respectively. However, their combined introduction had an additive effect on the tobramycin resistance phenotype. Activation of the AmgRS system slightly reduced the colony size of wild-type PA14, whereas the simultaneous overexpression of , the response regulator of the GacSA two-component system, further reduced colony size. In conclusion, we uncovered combinatorial influences of two-component systems on clinically relevant phenotypes such as resistance and the expression of the SCV phenotype. Our results clearly demonstrate that the combined activation of two-component systems has pleiotropic effects with unforeseen consequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655060 | PMC |
http://dx.doi.org/10.1128/AAC.01178-17 | DOI Listing |
mBio
December 2024
Molecular Biology Institute, University of California, Los Angeles, California, USA.
Unlabelled: Many bacteria metabolize ethanolamine as a nutrient source through cytoplasmic organelles named bacterial microcompartments (BMCs). Here we investigated the molecular assembly, regulation, and function of BMCs in a Gram-negative oral pathobiont that is associated with adverse pregnancy outcomes. The genome harbors a conserved ethanolamine utilization () locus with 21 genes that encode several putative BMC shell proteins and a two-component signal transduction system (TCS), in addition to the enzymes for ethanolamine transport and catabolism.
View Article and Find Full Text PDFNat Catal
October 2024
Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900.
Heterologous expression of nitrogenase has been actively pursued because of the far-reaching impact of this enzyme on agriculture, energy and environment. Yet, isolation of an active two-component, metallocentre-containing nitrogenase from a non-diazotrophic host has yet to be accomplished. Here, we report the heterologous synthesis of an active Mo-nitrogenase by combining genes from and in .
View Article and Find Full Text PDFUnlabelled: Two-component systems (TCS) enable bacteria to sense and respond to environmental signals, facilitating rapid adaptation. , a key oral pathobiont, employs the CarSR TCS to modulate coaggregation with various Gram-positive partners by regulating the expression of , encoding a surface adhesion protein, as revealed by RNA-Seq analysis. However, the direct regulation of the -containing operon ( ) by the response regulator CarR, the broader CarR regulon, and the signals sensed by this system remain unclear.
View Article and Find Full Text PDFUnlabelled: strain E264 ( E264) and close relatives stochastically duplicate a 208.6 kb region of chromosome I via RecA-dependent recombination between two nearly identical insertion sequence elements. Because homologous recombination occurs at a constant, low level, populations of E264 are always heterogeneous, but cells containing two or more copies of the region (Dup+) have an advantage, and hence predominate, during biofilm growth, while those with a single copy (Dup-) are favored during planktonic growth.
View Article and Find Full Text PDFNanoscale
December 2024
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
A chiral agent, TPE-ASP, incorporating aspartic acid as the chiral source and tetraphenylene derivatives as chromophores, was designed and synthesized. The chiral agent was self-assembled into regular spherical nanoparticles with a maximum luminescence asymmetry factor of |2.41 × 10| at 460 nm which is attributed to TPE-ASP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!