Background: Several susceptibility genes have been established for female breast cancer, of which mutations in BRCA1 and especially in BRCA2 are also known risk factors for male breast cancer (MBC). The role of other breast cancer genes in MBC is less well understood.
Methods: In this study, we have genotyped 68 MBC patients for the known breast or ovarian cancer associated mutations in the Finnish population in CHEK2, PALB2, RAD51C, RAD51D, and FANCM genes.
Results: CHEK2 c.1100delC mutation was found in 4 patients (5.9%), which is significantly more frequent than in the control population (OR: 4.47, 95% CI 1.51-13.18, p = 0.019). Four CHEK2 I157T variants were also detected, but the frequency did not significantly differ from population controls (p = 0.781). No RAD51C, RAD51D, PALB2, or FANCM mutations were found.
Conclusions: These data suggest that the CHEK2 c.1100delC mutation is associated with an increased risk for MBC in the Finnish population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584025 | PMC |
http://dx.doi.org/10.1186/s12885-017-3631-8 | DOI Listing |
Front Med (Lausanne)
January 2025
Department of General Surgery, The People's Hospital of Fenghua Ningbo, Ningbo, China.
Background: Breast cancer (BC) is the most common cancer in women in the U.S. and a leading cause of cancer-related deaths.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.
View Article and Find Full Text PDFBreast J
January 2025
Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.
Collagen type XI alpha 1 (COL11A1), a critical member of the collagen superfamily, is essential for tissue structure and integrity. This study aimed to validate previously identified variations in COL11A1 expression during breast cancer carcinogenesis and progression, as well as elucidate their clinical implications. COL11A1 mRNA expression levels were assessed using real-time reverse transcription-PCR (RT-PCR) in 30 pairs of normal breast tissue and primary breast cancer, 30 pairs of primary breast cancer and lymph node metastases, 30 benign tumors, and 107 primary breast cancers.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Department of Pathology, Hangzhou Women's Hospital, 369 Kunpeng Road, Shangcheng District, Hangzhou, 310008, Zhejiang, China.
Breast cancer is a common malignant tumor of women. Ki67 is an important biomarker of cell proliferation. With the quantitative analysis, it is an important indicator of malignancy for breast cancer diagnosis.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China.
Increasing evidence has shown that physical exercise remarkably inhibits oncogenesis and progression of numerous cancers and exercise-responsive microRNAs (miRNAs) exert a marked role in exercise-mediated tumor suppression. In this research, expression and prognostic values of exercise-responsive miRNAs were examined in breast cancer (BRCA) and further pan-cancer types. In addition, multiple independent public and in-house cohorts, in vitro assays involving multiple, macrophages, fibroblasts, and tumor cells, and in vivo models were utilized to uncover the tumor-suppressive roles of miR-29a-3p in cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!