Evidence of Coupled Carbon and Iron Cycling at a Hydrocarbon-Contaminated Site from Time Lapse Magnetic Susceptibility.

Environ Sci Technol

National Research Program, U.S. Geological Survey , Menlo Park, California 94025, United States.

Published: October 2017

Conventional characterization and monitoring of hydrocarbon (HC) pollution is often expensive and time-consuming. Magnetic susceptibility (MS) has been proposed as an inexpensive, long-term monitoring proxy of the degradation of HC. We acquired repeated down hole MS logging data in boreholes at a HC-contaminated field research site in Bemidji, MN, USA. The MS data were analyzed in conjunction with redox conditions and iron availability within the source zone to better assess whether MS can serve as a proxy for monitoring HC contamination in unconsolidated sediments. The MS response at the site diminished during the sampling period, which was found to coincide with depletion of solid phase iron in the source zone. Previous geochemical observations and modeling at the site suggest that the most likely cause of the decrease in MS is the transformation of magnetite to siderite, coupled with the exhaustion of ferrihydrite. Although the temporal MS response at this site gives valuable field-scale evidence for changing conditions of iron cycling and stability of iron minerals it does not provide a simple proxy for long-term monitoring of biodegradation of hydrocarbons in the smear zone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b02155DOI Listing

Publication Analysis

Top Keywords

iron cycling
8
magnetic susceptibility
8
long-term monitoring
8
conditions iron
8
source zone
8
response site
8
iron
5
site
5
evidence coupled
4
coupled carbon
4

Similar Publications

FeO might be more suitable than Fe for the construction of anammox-dominated Fe-N coupling system: Based on N isotope tracing.

Water Res

January 2025

Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China. Electronic address:

Iron not only influences the activity of anammox bacteria (AnAOB) but also participates in complex Fe-N cycles. In this study, the advanced N isotope tracing method was set up to quantify the potential rates of full nitrogen metabolic pathways under different ferrous iron (Fe and FeO) within two identical anammox granular reactors. The results indicated that both Fe and FeO enhanced AnAOB activity.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.

View Article and Find Full Text PDF

Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.

View Article and Find Full Text PDF

Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited.

View Article and Find Full Text PDF

Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!