AI Article Synopsis

  • Autoreactive CD4 T cells that turn into pathogenic Th17 cells can lead to autoimmune diseases, making it crucial to understand the factors regulating Th17 differentiation.
  • Research shows that miR-146a plays a key role in immune regulation, and its deficiency in mice led to more severe experimental autoimmune encephalomyelitis (EAE), which models multiple sclerosis.
  • The findings indicate that miR-146a helps control Th17 differentiation by inhibiting autocrine production of IL-6 and IL-21, suggesting that targeting miR-146a could offer new therapeutic options for autoimmune diseases.

Article Abstract

Autoreactive CD4 T cells that differentiate into pathogenic Th17 cells can trigger autoimmune diseases. Therefore, investigating the regulatory network that modulates Th17 differentiation may yield important therapeutic insights. miR-146a has emerged as a critical modulator of immune reactions, but its role in regulating autoreactive Th17 cells and organ-specific autoimmunity remains largely unknown. Here, we have reported that miR-146a-deficient mice developed more severe experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). We bred miR-146a-deficient mice with 2D2 T cell receptor-Tg mice to generate 2D2 CD4 T cells that are deficient in miR-146a and specific for myelin oligodendrocyte glycoprotein (MOG), an autoantigen in the EAE model. miR-146a-deficient 2D2 T cells induced more severe EAE and were more prone to differentiate into Th17 cells. Microarray analysis revealed enhancements in IL-6- and IL-21-induced Th17 differentiation pathways in these T cells. Further study showed that miR-146a inhibited the production of autocrine IL-6 and IL-21 in 2D2 T cells, which in turn reduced their Th17 differentiation. Thus, our study identifies miR-146a as an important molecular brake that blocks the autocrine IL-6- and IL-21-induced Th17 differentiation pathways in autoreactive CD4 T cells, highlighting its potential as a therapeutic target for treating autoimmune diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617680PMC
http://dx.doi.org/10.1172/JCI94012DOI Listing

Publication Analysis

Top Keywords

th17 differentiation
16
cd4 cells
12
th17 cells
12
cells
9
th17
8
autoreactive th17
8
organ-specific autoimmunity
8
autoreactive cd4
8
autoimmune diseases
8
mir-146a-deficient mice
8

Similar Publications

: Sjögren's syndrome (SS), an autoimmune disease, was characterized by sicca syndrome and systemic manifestations, presenting significant treatment challenges. Exosomes, naturally derived nanoparticles containing bioactive molecules, have garnered interest in regenerative medicine. The present study aimed to elucidate the immunoregulatory properties and mechanism of exosomes obtained from the stem cells derived from human exfoliated deciduous teeth (SHED-exos) in SS-induced sialadenitis.

View Article and Find Full Text PDF

Fibroblast growth factor 21 alleviated atopic march by inhibiting the differentiation of type 2 helper T cells.

Int Immunopharmacol

January 2025

Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.

View Article and Find Full Text PDF

Comparative Analysis of miRNA Expression Profiles of Yak Milk-Derived Exosomes at Different Altitudes.

Animals (Basel)

January 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Yaks are a rare and unique animal species inhabiting the Qinghai-Tibet Plateau; they are renowned for their remarkable ability to thrive in harsh environments. Milk-derived exosomes, tiny vesicles containing various biological molecules, play crucial roles in numerous pathological and physiological processes, including cell growth, development, and immune regulation. This study delved into the microRNA expression profiles of yak milk-derived exosomes collected from both high- and low-altitude populations using small RNA sequencing.

View Article and Find Full Text PDF

Schizothoracine fishes in saltwater lakes of the Tibetan Plateau are important models for studying the evolution and uplift of the Tibetan Plateau. Examining their adaptation to the high-salt environment is interesting. In this study, we first assembled the RNA-Seq data of each tissue of , , and from Qinghai Lake, Selincuo Lake, and Namtso Lake, respectively, obtained by the group previously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!