Practitioners have, for many years, argued that athletic sprinters should optimize front-side mechanics (leg motions occurring in front of the extended line through the torso) and minimize back-side mechanics. This study aimed to investigate if variables related to front- and back-side mechanics can be distinguished from other previously highlighted kinematic variables (spatiotemporal variables and variables related to segment configuration and velocities at touchdown) in how they statistically predict performance. A total of 24 competitive sprinters (age: 23.1 [3.4] y, height: 1.81 [0.06] m, body mass: 75.7 [5.6] kg, and 100-m personal best: 10.86 [0.22] s) performed two 20-m starts from block and 2 to 3 flying sprints over 20 m. Kinematics were recorded in 3D using a motion tracking system with 21 cameras at a 250 Hz sampling rate. Several front- and back-side variables, including thigh (r = .64) and knee angle (r = .51) at lift-off and maximal thigh extension (r = .66), were largely correlated (P < .05) with accelerated running performance, and these variables displayed significantly higher correlations (P < .05) to accelerated running performance than nearly all the other analyzed variables. However, the relationship directions for most front- and back-side variables during accelerated running were opposite in comparison to how the theoretical concept has been described. Horizontal ankle velocity, contact time, and step rate displayed significantly higher correlation values to maximal velocity sprinting than the other variables (P < .05), and neither of the included front- and back-side variables were significantly associated with maximal velocity sprinting. Overall, the present findings did not support that front-side mechanics were crucial for sprint performance among the investigated sprinters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2016-0812 | DOI Listing |
Nano Lett
November 2024
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui 230026, PR China.
Warmth preservation in cold climates requires a long-term heat supply. Conventional thermal devices usually deliver excessive heat and have difficulty preventing heat loss. Herein, to achieve durable thermal comfort, an asymmetric composite (AAAC) is devised through vacuum-filtrating silver nanowires (AgNWs) onto the surface of a poly(ethylene glycol) (PEG)-infiltrated aramid nanofiber aerogel.
View Article and Find Full Text PDFSci Rep
July 2024
Nuclear and Radiological Engineering and Medical Physics, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Conventional silicon junction detectors encounter significant carrier recombination within the heavily doped p and n layers, as well as beneath the metal contact regions, creating the so-called "dead layers", especially on the detector side. In this study, we present the tunnel oxide passivating contact with doped polysilicon on oxide, which demonstrates exceptional surface passivation and carrier selectivity. The key innovation lies in an ultra-thin (~ 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China.
Lightweight ablative thermal protection materials (TPMs), which can resist long-term ablation in an oxidizing atmosphere, are urgently required for aerospace vehicles. Herein, carbon fabric/phenol-formaldehyde resin/siloxane aerogels (CF/PFA/SiA) nanocomposite with interpenetrating network multiscale structure was developed via simple and efficient sol-gel followed by atmospheric pressure drying. The ternary networks structurally interpenetrating in macro-, micron-, and the nanoscales, chemically cross-linking at the molecular scale, and silica layer generated by in situ heating synergistically bring about low density (∼0.
View Article and Find Full Text PDFSensors (Basel)
April 2024
Department of Cartographic, Geodesy and Photogrammetry Engineering, Higher Technical School of Geodetic, Cartographic and Topographical Engineering, Universitat Politècnica de València, Campus de Vera s/n, 46022 Valencia, Spain.
The interest in precise point positioning techniques using smartphones increased with the launch of the world's first dual-frequency L1/L5 GNSS smartphone, Xiaomi Mi 8. The smartphone GNSS antenna is low-cost, sensitive to multipath, and limited by physical space and design. The main purpose of this work is to determine the mechanical location and antenna performance in terms of radiation pattern in an anechoic chamber using a Vector Network Analyzer (VNA) and robotic positioning platform by varying the elevation and azimuth angles between the transmitter and smartphone GNSS antennas; the power received and satellite visibility are developed in an outdoor scenario.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2024
Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Bonding diamond to the back side of gallium nitride (GaN) electronics has been shown to improve thermal management in lateral devices; however, engineering challenges remain with the bonding process and characterizing the bond quality for vertical device architectures. Here, integration of these two materials is achieved by room-temperature compression bonding centimeter-scale GaN and a diamond die via an intermetallic bonding layer of Ti/Au. Recent attempts at GaN/diamond bonding have utilized a modified surface activation bonding (SAB) method, which requires Ar fast atom bombardment immediately followed by bonding within the same tool under ultrahigh vacuum (UHV) conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!