Resonantly driven monodisperse phospholipid-coated microbubbles are expected to substantially increase the sensitivity and efficiency in contrast-enhanced ultrasound imaging and therapy. They can be produced in a microfluidic flow-focusing device, but questions remain as to the role of the device geometry, the liquid and gas flow, and the phospholipid formulation on bubble stability. Here, we develop a model based on simple continuum mechanics equations that reveals the scaling of the coalescence probability with the key physical parameters. It is used to characterize short-term coalescence behavior and long-term size stability as a function of flow-focusing geometry, bulk viscosity, lipid cosolvent mass fraction, lipid concentration, lipopolymer molecular weight, and lipopolymer molar fraction. All collected data collapse on two master curves given by universal equations for the coalescence probability and the long-term size stability. This work is therefore a route to a more fundamental understanding of the physicochemical monolayer properties of microfluidically formed bubbles and their coalescence behavior in a flow-focusing device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02547 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States.
Metal flux methods are excellent for synthesizing high-quality hexagonal boron nitride (hBN) crystals, but the atomic mechanisms of hBN nucleation and growth in these systems are poorly understood and difficult to probe experimentally. Here, we harness classical reactive molecular dynamics (ReaxFF) to unravel the mechanisms of hBN synthesis from liquid nickel solvent over time scales up to 30 ns. These simulations mimic experimental conditions by including relatively large liquid nickel slabs containing dissolved boron and a molecular nitrogen gas phase.
View Article and Find Full Text PDFThe worst-case runtime complexity to simulate haplotype segments identical by descent (IBD) is quadratic in sample size. We propose two main techniques to reduce the compute time, both of which are motivated by coalescent and recombination processes. We provide mathematical results that explain why our algorithm should outperform a naive implementation with high probability.
View Article and Find Full Text PDFPLoS Pathog
January 2025
REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P.
View Article and Find Full Text PDFSci Rep
January 2025
Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box: 11365-8486, Tehran, Iran.
The research discussed in this paper focused on experimental data using a perforated rotating disc column to determine the factors that impact the distribution of drop sizes. A standard test system was utilized, consisting of zinc ions and D2EHPA extractant. When the rotor speed is increased, a majority of droplets display a smaller range of diameters, primarily because of decreased coalescence and increased breakup effects.
View Article and Find Full Text PDFJ Theor Biol
February 2025
Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland. Electronic address:
The Wright-Fisher model and the Moran model are both widely used in population genetics. They describe the time evolution of the frequency of an allele in a well-mixed population with fixed size. We propose a simple and tractable model which bridges the Wright-Fisher and the Moran descriptions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!