We report a virus-incorporated biological template (biotemplate) on electrode surfaces and its use in electrochemical nucleation of metal nanocomposites as an electrocatalytic material for energy applications. The biotemplate was developed with M13 virus (M13) incorporated in a silicate sol-gel matrix as a scaffold to nucleate Au-Pt alloy nanostructures by electrodeposition, together with reduced graphene oxide (rGO). The phage when engineered with Y3E peptides could nucleate Au-Pt alloy nanostructures, which ensured adequate packing density, simultaneous stabilization of rGO, and a significantly increased electrochemically active surface area. Investigation of the electrocatalytic activity of the resulting sol-gel composite catalyst toward methanol oxidation in an alkaline medium showed that this catalyst had mass activity greater than that of the biotemplate containing wild-type M13 and that of monometallic Pt and other Au-Pt nanostructures with different compositions and supports. M13 in the nanocomposite materials provided a close contact between the Au-Pt alloy nanostructures and rGO. In addition, it facilitated the availability of an OH-rich environment to the catalyst. As a result, efficient electron transfer and a synergistic catalytic effect of the Au and Pt in the alloy nanostructures toward methanol oxidation were observed. Our nanocomposite synthesis on the novel biotemplate and its application might be useful for developing novel clean and green energy-generating and energy-storage materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b06545 | DOI Listing |
Materials (Basel)
December 2024
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16803, USA.
Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr ions at a dose of 10 cm were annealed using EWF at 250 °C for 60 s.
View Article and Find Full Text PDFSmall
January 2025
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.
Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.
View Article and Find Full Text PDFNano Lett
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
Revealing the structure stability and evolution of gold nanocrystals at the atomic scale is crucial to their versatile applications; however, the fundamental mechanism remains elusive due to the lack of characterizations. In this work, the structural evolution of two types of Au nanobipyramids (Au NBPs) at elevated temperatures is monitored through electron microscopy analysis, and there is a sharp distinction between their structure stability despite that they possess the same crystalline structure. Detailed material characterization reveals that the surface alloying of residual Ag with Au (customized Ag armor) can greatly inhibit the Au atom diffusion and contribute remarkably to the stability and surface-enhanced Raman scattering improvement.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laboratory of Metals and Alloys Under Extreme Impacts, Ufa University of Science and Technology, 32 Zaki Validi str., Ufa 450076, Russia.
This study investigates the dislocation density in ceramics processed by severe plastic deformation at room and elevated temperatures via high-pressure torsion (HPT) for various numbers of turns and shear strains. Ceramics, characterized by ionic or covalent bonding, typically exhibit brittleness due to limited dislocation activity. However, HPT enables significant microstructural transformations in ceramics including dislocation nucleation and accumulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Experimental Physics, Faculty of Mathematics Physics and Informatics, University of Gdańsk, Wita Stwosza 57, Gdańsk 80-308, Poland.
This study examines the structure and properties of NiMo-C coatings synthesized via reactive magnetron sputtering of a NiMo alloy target in an argon/acetylene atmosphere. The coating structure evolves with carbon content from nanocrystalline, through amorphous to quasi-amorphous with a nanocolumnar structure. The nanostructure consists of metallic columns perpendicular to the substrate surrounded by an amorphous carbon shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!