The purpose of the current review is show how the principles and techniques of radiation chemistry have enabled the direct reactions of free radicals with biomolecules and biomaterials to be investigated at the molecular level. In particular, the review focusses on the free radical-induced fragmentation of glycosaminoglycans. Glycosaminoglycans are large linear polysaccharides consisting of repeating disaccharide units and are important components of the extracellular matrix (ECM) either in free form (hyaluronan) or as a component of proteoglycans. Oxidative damage of the extracellular matrix components by either enzymatic or non-enzymatic pathways may have implications for the initiation and progression of a range of human diseases. These include arthritis, kidney disease, cardiovascular disease, lung disease, periodontal disease and chronic inflammation. Oxidative damage to hyaluronan by reactive oxidative species and thus the potential mechanism of damage to the ECM and its role in human pathologies is reviewed with particular focus on damage initiated by potential in vivo free radicals such as superoxide, carbonate and hydroxyl radicals. Such knowledge has also allowed radiation protecting systems to be developed so that sterilising doses of radiation can be delivered to sensitive biomolecules such as proteins and glycosaminoglycans, and also to sensitive biomaterials such as tissue allografts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10561-017-9650-5 | DOI Listing |
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom.
Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.
Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, 's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence activity with its critical role in bacterial stress responses. Our findings reveal that is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
Radio-immunotherapy has antitumor activity but also causes toxicity, which limits its clinical application. JS-201 is a dual antibody targeting PD-1 and TGF-β signaling. We investigated the antitumour effect of JS-201 combined with radiotherapy and the effect on radiation-induced lung injury (RILI).
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!