Here we report on the effect of local molecular organization or "tertiary structure" on the charge transport properties of thiol-tethered tetraphenylporphyrin (ZnTPPF-SCSH) nanoscale clusters of ca. 5 nm in lateral dimension embedded within a dodecanethiol (C12) monolayer on Au(111). The structure of the clusters in the mixed monolayers and their resulting transport properties were monitored by Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM) and Spectroscopy (STS). The mixed films were deposited on Au(111) for a period of one to five days, during which the lateral dimensions of the ZnTPPF-SCSH islands that were formed after one day reduced by nearly 35% on average by five days, accompanied by a noticeable depletion of the surrounding C12 monolayer. These subtle changes in mixed monolayer morphology were accompanied by drastic differences in conductance. The ZnTPPF-SCSH clusters assembled for one day exhibited highly reproducible I-V spectra with simple tunneling behavior. By three days, this evolved into bias-induced switching of conductance, with a ∼100-1000 fold increase. Furthermore, current fluctuations started to become significant, and then dominated transport across the ZnTPPF-SCSH clusters assembled over five days. Our data suggests that this evolution can be understood by slow surface diffusion, enabling the ZnTPPF-SCSH molecules to overcome initial steric hindrance in the early stages of island formation in the C12 monolayer (at day one), to reach a more energetically-favored, close-packed organization, as noted by the decrease in island size (by day three). However, when desorption of the supporting matrix of C12 became pronounced (by day five), the ZnTPPF-SCSH clusters began to lose stabilization, and stochastic switching was then observed to dominate transport in the clusters, illustrating the critical nature of the local organization on these transport properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7fd00118eDOI Listing

Publication Analysis

Top Keywords

transport properties
16
c12 monolayer
12
zntppf-scsh clusters
12
clusters assembled
8
transport
6
zntppf-scsh
6
clusters
6
day
5
influence nearest-neighbour
4
nearest-neighbour interactions
4

Similar Publications

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

This study aims to determine the changes in the photosynthetic performance of leaves at different leaf positions and their correlation and to screen out the basic tillage methods suitable for improving the yield. The decrease in soil salt content significantly improved the PSII performance index and quantum yield for electron transport of the bottom leaf group, synergistically enhanced the photosynthetic performance of summer maize leaves (especially the bottom leaf group), and enhanced the correlation between the bottom, middle (including the ear leaf), and upper leaf groups. Under subsoiling tillage conditions, the bottom leaves could produce more carbohydrates to meet the normal growth of the root system, promote the photosynthesis of the middle leaf group at the ear position, and increase the nutrient output of the upper leaf group to the female ear in the middle and later stages of maize aging.

View Article and Find Full Text PDF

TiCT MXene Thin Films and Intercalated Species Characterized by IR-to-UV Broadband Ellipsometry.

J Phys Chem C Nanomater Interfaces

January 2025

Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.

MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.

View Article and Find Full Text PDF

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Introduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.

Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!