Image-based feedback and analysis system for digital microfluidics.

Lab Chip

Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec, Canada.

Published: October 2017

Digital microfluidics (DMF) is a technology that provides a means of manipulating nL-μL volumes of liquids on an array of electrodes. By applying an electric potential to an electrode, these discrete droplets can be controlled in parallel which can be transported, mixed, reacted, and analyzed. Typically, an automation system is interfaced with a DMF device that uses a standard set of basic instructions written by the user to execute droplet operations. Here, we present the first feedback method for DMF that relies on imaging techniques that will allow online detection of droplets without the need to reactivate all destination electrodes. Our system consists of integrating open-source electronics with a CMOS camera and a zoom lens for acquisition of the images that will be used to detect droplets on the device. We also created an algorithm that uses a Hough transform to detect a variety of droplet sizes and to detect singular droplet dispensing and movement failures on the device. As a first test, we applied this feedback system to test droplet movement for a variety of liquids used in cell-based assays and to optimize different feedback actuation schemes to improve droplet movement fidelity. We also applied our system to a colorimetric enzymatic assay to show that our system is capable of biological analysis. Overall, we believe that using our approach of integrating imaging and feedback for DMF can provide a platform for automating biological assays with analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7lc00826kDOI Listing

Publication Analysis

Top Keywords

digital microfluidics
8
droplet movement
8
system
6
droplet
5
image-based feedback
4
feedback analysis
4
analysis system
4
system digital
4
microfluidics digital
4
dmf
4

Similar Publications

Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding.

Microsyst Nanoeng

January 2025

Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.

Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.

View Article and Find Full Text PDF

Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.

View Article and Find Full Text PDF

Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent.

Food Environ Virol

January 2025

Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.

Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent.

View Article and Find Full Text PDF

Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.

View Article and Find Full Text PDF

Digital recombinase polymerase amplification chip based on asymmetric contact angle composite interface.

Anal Chim Acta

February 2025

Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:

Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!