Microalgae - unicellular photosynthetic organisms - have received increasing attention for their ability to biologically convert CO into valuable products. The commercial use of microalgae requires screening strains to improve the biomass productivity to achieve a high-throughput. Here, we developed a microfluidic method that uses a magnetic field to separate the microdroplets containing different concentrations of microalgal cells. The separation efficiency is maximized using the following parameters that influence the amount of lateral displacement of the microdroplets: magnetic nanoparticle concentration, flow rate of droplets, x- and y-axis location of the magnet, and diameter of the droplets. Consequently, 91.90% of empty, 87.12% of low-, and 90.66% of high-density droplets could be separated into different outlets through simple manipulation of the magnetic field in the microfluidic device. These results indicate that cell density-based separation of microdroplets using a magnetic force can provide a promising platform to isolate microalgal species with a high growth performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5583291PMC
http://dx.doi.org/10.1038/s41598-017-10764-6DOI Listing

Publication Analysis

Top Keywords

magnetic field
8
microdroplets magnetic
8
magnetophoretic sorting
4
microdroplets
4
sorting microdroplets
4
microdroplets microalgal
4
microalgal cell
4
cell densities
4
densities rapid
4
rapid isolation
4

Similar Publications

This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.

View Article and Find Full Text PDF

Design and Evaluation of Augmented Reality-Enhanced Robotic System for Epidural Interventions.

Sensors (Basel)

December 2024

Surgical Performance Enhancement and Robotics (SuPER) Centre, Department of Surgery, McGill University, Montreal, QC H3A 0G4, Canada.

The epidural injection is a medical intervention to inject therapeutics directly into the vicinity of the spinal cord for pain management. Because of its proximity to the spinal cord, imprecise insertion of the needle may result in irreversible damage to the nerves or spinal cord. This study explores enhancing procedural accuracy by integrating a telerobotic system and augmented reality (AR) assistance.

View Article and Find Full Text PDF

This study investigates the effect of microstructural changes in polyurethane coatings on their water resistance properties. Polyurethane coatings with varying diluent contents were prepared and tested for water penetration resistance and mechanical property retention. The time-dependent behavior of water within the coatings at different immersion durations was analyzed using low-field nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

The cleanliness of lubricating oil plays a key role in determining the operational health of mechanical systems, serving as a critical metric that delineates the extent of equipment wear. In this study, we present a magnetic-core-type planar coil particle detection sensor. The detection accuracy and detection limit are improved by optimizing the magnetic field inside the sensor.

View Article and Find Full Text PDF

The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in multiple spatial directions. This system features a three-dimensional transmitting structure with a Helmholtz coil and saddle coil pairs, combined with a one-dimensional receiving structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!