The advent of stem cell-derived retinal organoids has brought forth unprecedented opportunities for developmental and physiological studies, while presenting new therapeutic promise for retinal degenerative diseases. From a translational perspective, organoid systems provide exciting new prospects for drug discovery, offering the possibility to perform compound screening in a three-dimensional (3D) human tissue context that resembles the native histoarchitecture and to some extent recapitulates cellular interactions. However, inherent variability issues and a general lack of robust quantitative technologies for analyzing organoids on a large scale pose severe limitations for their use in translational applications. To address this need, we have developed a screening platform that enables accurate quantification of fluorescent reporters in complex human iPSC-derived retinal organoids. This platform incorporates a fluorescence microplate reader that allows -dimensional detection and fine-tuned wavelength selection. We have established optimal parameters for fluorescent reporter signal detection, devised methods to compensate for organoid size variability, evaluated performance and sensitivity parameters, and validated this technology for functional applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675442PMC
http://dx.doi.org/10.1242/dev.146290DOI Listing

Publication Analysis

Top Keywords

retinal organoids
12
three-dimensional automated
4
automated reporter
4
reporter quantification
4
quantification 3d-arq
4
3d-arq technology
4
technology enables
4
enables quantitative
4
quantitative screening
4
retinal
4

Similar Publications

Article Synopsis
  • Histology is crucial for examining tissue structure and cell details, but standard methods for cryosectioning small tissues like organoids lack efficiency and cost-effectiveness, hindering analysis.
  • The adapted HistoBrick method uses an optimal embedding mixture of 8% PEGDA and 2.5% gelatine, providing support for fragile samples during cryosectioning and preserving delicate structures of human retinal organoids.
  • Using these PEGDA-gelatine HistoBricks, researchers monitored retinal organoid development over time, finding that photoreceptor cell bodies were sustained for up to 98 weeks, although outer segments diminished, making this approach valuable for increased throughput in tissue studies and research.
View Article and Find Full Text PDF

Transplantation of derivative retinal organoids from chemically induced pluripotent stem cells restored visual function.

NPJ Regen Med

December 2024

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.

As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models.

View Article and Find Full Text PDF

Background: Induced pluripotent stem cell (iPSC) technology has emerged as a powerful tool for disease modeling, providing an innovative platform for investigating disease mechanisms. iPSC-derived organoids, including retinal organoids, offer patient-specific models that closely replicate in vivo cellular environments, making them ideal for studying retinal neurodegenerative diseases where retinal ganglion cells (RGCs) are impacted. N6-methyladenosine (m6A), a prevalent internal modification in eukaryotic mRNAs, plays a critical role in RNA metabolic processes such as splicing, stability, translation, and transport.

View Article and Find Full Text PDF

New frontiers about retinal cell transplantation for retinal degenerative diseases start from the idea that acting on stem cells can help regenerate retinal layers and establish new synapses among retinal cells. Deficiency or alterations of synaptic input and neurotrophic factors result in trans-neuronal degeneration of the inner retinal cells. Thus, the disruption of photoreceptors takes place.

View Article and Find Full Text PDF

Central nervous system vascularization in human embryos and neural organoids.

Cell Rep

December 2024

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Article Synopsis
  • Neural organoids from human pluripotent stem cells are emerging as powerful tools for exploring CNS development, disease, and drug interactions.
  • Despite their promise, many studies on CNS organoids lack effective blood vessel systems, limiting their applicability.
  • The review examines current knowledge on vascular development in various CNS regions and emphasizes the need for bioengineering advancements to create more functional vascularized organoid models for research purposes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!