Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

Protein Expr Purif

Research and Production Complex, Pasteur Institute of Iran, Department of Recombinant Products, Km.25 Tehran-Karaj Highway, Tehran 3159915111, Iran. Electronic address:

Published: January 2018

In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2017.08.011DOI Listing

Publication Analysis

Top Keywords

recombinant hepatitis
8
hepatitis surface
8
surface antigen
8
enhancing recovery
4
recovery recombinant
4
antigen lab-scale
4
lab-scale large-scale
4
large-scale anion-exchange
4
anion-exchange chromatography
4
chromatography optimizing
4

Similar Publications

Advancing hepatitis B elimination: A systematic review of global immunization progress and future directions.

Diagn Microbiol Infect Dis

December 2024

Molecular Biology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.

The World Health Organization (WHO) has set a target of eliminating viral hepatitis B and C by 2030. Vaccination against hepatitis B (HepB) remains the most effective strategy for controlling and eliminating Hepatitis B Virus (HBV) infection. The development of HepB vaccines started with plasma-derived vaccines, which have since been largely replaced by safer and more effective recombinant vaccines, now considered the gold standard for preventing HBV infections.

View Article and Find Full Text PDF

Hepatitis B is a viral infection of the liver caused by the hepatitis B virus (HBV). Entecavir (ETV) is considered the primary therapeutic option for HBV treatment, primarily functioning by inhibiting HBV replication. Ubiquitin-specific peptidase 7 (USP7), a deubiquitinating enzyme, plays a crucial role in regulating DNA repair mechanisms.

View Article and Find Full Text PDF

Background: A multivariate predictive model was constructed using baseline and 12-week clinical data to evaluate the rate of clearance of hepatitis B surface antigen (HBsAg) at the 48-week mark in patients diagnosed with chronic hepatitis B who are receiving treatment with pegylated interferon α (PEG-INFα).

Methods: The study cohort comprised CHB patients who received pegylated interferon treatment at Mengchao Hepatobiliary Hospital, Fujian Medical University, between January 2019 and April 2024. Predictor variables were identified (LASSO), followed by multivariate analysis and logistic regression analysis.

View Article and Find Full Text PDF

Combination of spatial transcriptomics analysis and retrospective study reveals liver infection of SARS-COV-2 is associated with clinical outcomes of COVID-19.

EBioMedicine

December 2024

Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China. Electronic address:

Background: Liver involvement is a common complication of coronavirus disease 2019 (COVID-19), especially in hospitalized patients. However, the underlying mechanisms involved are not fully understood.

Methods: Immunohistochemistry (IHC) staining of SARS-CoV-2 spike (S) and nucleocapsid (N) proteins was conducted on liver tissues from six patients with COVID-19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!