Effects of naftopidil on inhibitory transmission in substantia gelatinosa neurons of the rat spinal dorsal horn in vitro.

J Neurol Sci

Graduate School of Health Sciences, Kumamoto Health Science University, Kumamoto 861-5598, Japan; Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.

Published: September 2017

Objective: Naftopidil is used clinically for the treatment of voiding disorders in benign prostatic hyperplasia. Previous in vivo experiments in which naftopidil was applied intrathecally abolished rhythmic bladder contraction, suggesting that naftopidil might inhibit a voiding reflex through interaction with spinal dorsal horn neurons. Here we aimed to clarify the mechanism of action of naftopidil on dorsal horn neurons.

Methods: Whole-cell patch-clamp recordings were performed using substantia gelatinosa neurons of adult rat spinal cord slices. Miniature or evoked inhibitor and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were analyzed.

Results: Bath-applied naftopidil increased the frequency but not the amplitude of miniature IPSCs (mIPSCs) in 38% of neurons tested; in contrast, the effect of naftopidil on miniature EPSCs (mEPSCs) were mild and observed in only 2 out of 19 neurons. Naftopidil enhanced the amplitude of both GABAergic and glycinergic evoked-IPSCs (eIPSCs) that were elicited by focal stimuli in the presence of either the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), or the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV).

Conclusions: Although naftopidil was developed as an alpha-1 adrenoceptor antagonist, our previous spinal cord slice experiments showed that the activation of an alpha-1 adrenoceptor in substantia gelatinosa increases the frequency of mIPSCs. This result suggested that, under our conditions, naftopidil may interact with a receptor(s) other than an alpha-1 adrenoceptor in the spinal dorsal horn. The present results suggested that naftopidil enhances the release of GABA and glycine by activating inhibitory interneuron terminals in the spinal dorsal horn via a receptor other than an alpha-1 adrenoceptor, thereby modulating sensory transmission in the substantia gelatinosa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2017.07.030DOI Listing

Publication Analysis

Top Keywords

dorsal horn
20
substantia gelatinosa
16
spinal dorsal
16
alpha-1 adrenoceptor
16
naftopidil
10
transmission substantia
8
gelatinosa neurons
8
rat spinal
8
spinal cord
8
receptor antagonist
8

Similar Publications

Central projections of nociceptive input originating from the low back and limb muscle in rats.

Sci Rep

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Japan.

Since clinical features of chronic muscle pain originating from the low back and limbs are different (higher prevalence and broader/duller sensation of low back muscle pain than limb muscle pain), spinal and/or supraspinal projection of nociceptive information could differ between the two muscles. We tested this hypothesis using c-Fos immunohistochemistry combined with retrograde-labeling of dorsal horn (DH) neurons projecting to ventrolateral periaqueductal grey (vlPAG) or ventral posterolateral nucleus of the thalamus (VPL) by fluorogold (FG) injections into the vlPAG or VPL. C-Fos expression in the DH was induced by injecting 5% formalin into the multifidus (MF, low back) or gastrocnemius-soleus (GS, limb) muscle.

View Article and Find Full Text PDF

Unlabelled: Calcium imaging is a key method to record the spiking activity of identified and genetically targeted neurons. However, the observed calcium signals are only an indirect readout of the underlying electrophysiological events (single spikes or bursts of spikes) and require dedicated algorithms to recover the spike rate. These algorithms for spike inference can be optimized using ground truth data from combined electrical and optical recordings, but it is not clear how such optimized algorithms perform on cell types and brain regions for which ground truth does not exist.

View Article and Find Full Text PDF

Proteomic analysis of spinal dorsal horn in prior exercise protection against neuropathic pain.

Sci Rep

January 2025

Department of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Yanta District, Xi'an, 710061, China.

Neuropathic pain (NP) is a complex and prevalent chronic pain condition that affects millions of individuals worldwide. Previous studies have shown that prior exercise protects against NP caused by nerve injury. However, the underlying mechanisms of this protective effect remain to be uncovered.

View Article and Find Full Text PDF

Regional mechanical properties of spinal cord gray and white matter in transverse section.

J Mech Behav Biomed Mater

January 2025

Ecole de Technologie Supérieure, 1100 Rue Notre Dame O, Montréal, QC, H3C 1K3, Canada; Research Center, CIUSSS Nord de L'île de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada; ILab-Spine - Laboratoire International en Imagerie et Biomécanique Du Rachis, France.

Understanding spinal cord injury requires a comprehensive knowledge of its mechanical properties, which remains debated due to the variability reported. This study aims to characterize the regional mechanical properties of the spinal cord in transverse sections using micro-indentation. Quasi-static indentations were performed on the entire surface of transverse slices obtained from 10 freshly harvested porcine thoracic spinal cords using a 0.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI)-induced neuropathic pain (NP) is a severe disease with high prevalence in clinics. Gene reprogramming and tissue remodeling in the dorsal root ganglia (DRG) and spinal cord (SC) drive the development and maintenance of neuropathic pain (NP). However, our understanding of the NP-associated spatial molecular processing landscape of SC and the non-synaptic interactions between DRG neurons and SC cells remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!