Assay of DNA methyltransferase 1 activity based on uracil-specific excision reagent digestion induced G-quadruplex formation.

Anal Chim Acta

State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, PR China. Electronic address:

Published: September 2017

DNA methylation catalyzed by DNA methyltransferase plays an important role in many biological processes including gene transcription, genomic imprinting and cellular differentiation. Herein, a novel and effective electrochemical method for the assay of DNA methyltransferase 1(DNMT1) activity has been successfully developed by using uracil-specific excision reagent (USER) induced G-quadruplex formation. Briefly, double stranded DNA containing the recognition sequence of DNMT1 is immobilized on the electrode. Among them, one strand (DNA S1) contains G-rich sequence and a cytosine base, while the supplement strand (DNA S2) cotains C-rich sequence and a methylated cytosine. Through the activity of DNMT1, the hemimethylated CG recognition sequence of the double stranded DNA are methylated and DNA S2 strand is cleaved and removed after the subsequently treatment with EpiTect fast bisulfite conversion kits and USER, leaving the DNA S1 to form the G-quadruplex-hemin DNAzyme for signal amplification. Under optimal-conditions, the method shows wide linear range of 0.1-40 U mL with a detection limit of 0.06 U mL. Furthermore, the inhibition assay study demonstrates that SGI-1027 can inhibit the DNMT 1 activity with the IC50 values of 6 μM in the presence of 160 μM S-adenosylmethionine. Since this method can detect human DNMT1 activity effectively and has successfully been applied in complex biological samples, it may have great potential in the applications in DNA methylation related clinical practices and biochemical researches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2017.07.021DOI Listing

Publication Analysis

Top Keywords

dna methyltransferase
12
dna
10
assay dna
8
uracil-specific excision
8
excision reagent
8
induced g-quadruplex
8
g-quadruplex formation
8
dna methylation
8
double stranded
8
stranded dna
8

Similar Publications

Epstein-Barr virus (EBV) contributes to ~1.5% of human cancers, including lymphomas, gastric and nasopharyngeal carcinomas. In most of these, nearly 80 viral lytic genes are silenced by incompletely understood epigenetic mechanisms, precluding use of antiviral agents such as ganciclovir to treat the 200,000 EBV-associated cancers/year.

View Article and Find Full Text PDF

DNA double strand breaks (DSBs) can be generated spontaneously during DNA replication and are repaired primarily by Homologous Recombination (HR). However, efficient repair requires chromatin remodeling to allow the recombination machinery access to the break. TIP60 is a complex conserved from yeast to humans that is required for histone acetylation and modulation of HR activity at DSBs.

View Article and Find Full Text PDF

Background: Larsucosterol is a DNA methyltransferase inhibitor in development for alcohol-associated hepatitis (AH), a disease for which there is no approved therapy.

Methods: In this phase 2b trial, patients with severe AH were randomly assigned 1:1:1 to receive 30 mg or 90 mg of larsucosterol or placebo; a second dose was administered after 72 hours if the patient remained hospitalized. All patients received supportive care as determined by investigators.

View Article and Find Full Text PDF

Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.

View Article and Find Full Text PDF

Methyl-dependent auto-regulation of the DNA N6-adenine methyltransferase AMT1 in the unicellular eukaryote Tetrahymena thermophila.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

DNA N6-methyladenine (6mA) is a potential epigenetic mark involved in gene transcription in eukaryotes, yet the regulatory mechanism governing its methyltransferase (MTase) activity remains obscure. Here, we exploited the 6mA MTase AMT1 to elucidate its auto-regulation in the unicellular eukaryote Tetrahymena thermophila. The detailed endogenous localization of AMT1 in vegetative and sexual stages revealed a correlation between the 6mA reestablishment in the new MAC and the occurrence of zygotically expressed AMT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!