The abundance of phyllosphere bacterial communities of seven genotypes of rice ADT- 38, ADT-43, CR-1009, PB-1, PS-5, P-44, and PB-1509 was investigated, in relation to nutrient dynamics of rhizosphere and leaves. P-44 genotype recorded highest pigment accumulation, while genotypes CR-1009 and P-44 exhibited most number of different bacterial morphotypes, Colony forming units in two media (Nutrient agar and R2A) varied significantly and ranged from 10-10 per g plant tissues. Among the selected 60 distinct morphotypes, IAA and siderophore producers were the dominant functional types. Biocontrol activity against Drechslera oryzae was shown by 38 isolates, while 17 and 9 isolates were potent against Rhizoctonia solani and Magnaporthe oryzae respectively. Principal Component Analysis (PCA) illustrated the significant effects of selected soil and leaf nutrients of seven rice varieties on the culturable phyllospheric population (log CFU), particularly in the R2A medium. Eigen values revealed that 83% of the variance observed could be assigned to Leaf-Fe, Leaf-Mn, chlorophyll b and soil organic carbon (OC). Quantitative PCR analyses of abundance of bacteria, cyanobacteria and archaebacteria revealed a host-specific response, with CR-1009 showing highest number of 16S rRNA copies of bacterial members, while both P-44 and PS-5 had higher cyanobacterial abundance, but lowest number of those belonging to archaebacteria. Nutritional aspects of leaf and soil influenced the abundance of bacteria and their functional attributes; this is of interest for enhancing the efficacy of foliar inoculants, thereby, improving plant growth and disease tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2017.07.007 | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Animal Science, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
The intestinal microbiota is widely recognized as an integral factor in host health, metabolism, and immunity. In this study, the impact of dietary fiber sources on the intestinal microbiota and the production of short-chain fatty acids (SCFAs) was evaluated in Lohmann White laying hens. The hens were divided into four treatment groups: a control diet without fiber, a diet with wheat bran (mixed fibers), a diet with insoluble fiber (cellulose), and a diet with soluble fiber (pectin), with six replicates of four hens each.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Col. San Isidro, Km 8.5 Carr. Yautepec-Jojutla, Yautepec, Morelos, C.P. 62731, México.
The relationship between the gut microbiota (GM) and the health of human beings has been a topic of growing interest in the last few years. Legumes are a rich source of indigestible carbohydrates, including resistant starch (RS), which are substrates of the GM. The aim of this study was to evaluate the effect of the indigestible fraction of legumes on the fecal microbiota of normal-weight (NW) and obese (O) donors.
View Article and Find Full Text PDFCurr Microbiol
January 2025
College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China.
The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial.
View Article and Find Full Text PDFInfect Immun
January 2025
Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!