Background/aims: Glioblastoma (GBM) is one of the most aggressive cancers, counting for a high number of the newly diagnosed patients with central nervous system (CNS) cancers in the United States and Europe. Major features of GBM include aggressive and invasive growth as well as a high resistance to treatment. Kv1.3, a potassium channel of the shaker family, is expressed in the inner mitochondrial membrane of many cancer cells. Inhibition of mitochondrial Kv1.3 was shown to induce apoptosis in several tumor cells at doses that were not lethal for normal cells.

Methods: We investigated the expression of Kv1.3 in different glioma cell lines by immunocytochemistry, western blotting and electron microscopy and analyzed the effect of newly synthesized, mitochondria-targeted, Kv1.3 inhibitors on the induction of cell death in these cells. Finally, we performed in vivo studies on glioma bearing mice.

Results: Here, we report that Kv1.3 is expressed in mitochondria of human and murine GL261, A172 and LN308 glioma cells. Treatment with the novel Kv1.3 inhibitors PAPTP or PCARBTP as well as with clofazimine induced massive cell death in glioma cells, while Psora-4 and PAP-1 were almost without effect. However, in vivo experiments revealed that the drugs had no effect on orthotopic brain tumors in vivo.

Conclusion: These data serve as proof of principle that Kv1.3 inhibitors kills GBM cells, but drugs that act in vivo against glioblastoma must be developed to translate these findings in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000480643DOI Listing

Publication Analysis

Top Keywords

kv13 inhibitors
12
potassium channel
8
kv13
8
cell death
8
glioma cells
8
cells
7
targeting potassium
4
channel kv13
4
kv13 kills
4
kills glioblastoma
4

Similar Publications

Background: Changes in K channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K channels. Their involvement in hydrogen sulfide (HS)-mediated vasorelaxation is still unclear, and data about human vessels are limited.

View Article and Find Full Text PDF

K1.3-induced hyperpolarization is required for efficient Kaposi's sarcoma-associated herpesvirus lytic replication.

Sci Signal

July 2024

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK.

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K channel K1.

View Article and Find Full Text PDF

Regulation of T Lymphocyte Functions through Calcium Signaling Modulation by Nootkatone.

Int J Mol Sci

May 2024

Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea.

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, K1.

View Article and Find Full Text PDF

Immunosuppressive effects of new thiophene-based K1.3 inhibitors.

Eur J Med Chem

November 2023

University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia. Electronic address:

Voltage-gated potassium channel K1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca homeostasis. Here, we present the structure-activity relationship, K1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!