Most drugs currently entering the clinical pipeline for severe malaria therapeutics are of lipophilic nature, with a relatively poor solubility in plasma and large biodistribution volumes. Low amounts of these compounds do consequently accumulate in circulating Plasmodium-infected red blood cells, exhibiting limited antiparasitic activity. These drawbacks can in principle be satisfactorily dealt with by stably encapsulating drugs in targeted nanocarriers. Here this approach has been adapted for its use in immunocompetent mice infected by the Plasmodium yoelii 17XL lethal strain, selected as a model for human blood infections by Plasmodium falciparum. Using immunoliposomes targeted against a surface protein characteristic of the murine erythroid lineage, the protocol has been applied to two novel antimalarial lipophilic drug candidates, an aminoquinoline and an aminoalcohol. Large encapsulation yields of >90% were obtained using a citrate-buffered pH gradient method and the resulting immunoliposomes reached in vivo erythrocyte targeting and retention efficacies of >80%. In P. yoelii-infected mice, the immunoliposomized aminoquinoline succeeded in decreasing blood parasitemia from severe to uncomplicated malaria parasite densities (i.e. from ≥25% to ca. 5%), whereas the same amount of drug encapsulated in non-targeted liposomes had no significant effect on parasite growth. Pharmacokinetic analysis indicated that this good performance was obtained with a rapid clearance of immunoliposomes from the circulation (blood half-life of ca. 2 h), suggesting a potential for improvement of the proposed model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2017.08.020 | DOI Listing |
Langmuir
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.
View Article and Find Full Text PDFMiddle East J Dig Dis
October 2024
Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
Background: Repeated polyserositis, another name for familial Mediterranean fever (FMF), is an autoimmune disorder with an autosomal recessive nature primarily characterized by short-lived repeated periods of peritonitis, pleuritis, and arthritis, generally accompanied by fever.
Methods: Our participants were divided into two groups. Group I (patients): 100 individuals who were diagnosed as patients with FMF and were monitored.
Cureus
January 2025
Emergency Medicine, University Hospitals St. John Medical Center, Westlake, USA.
Autoimmune hemolytic anemia (AIHA) is a condition that causes an individual's immune system to destroy its own red blood cells. Immune cells are activated against the red blood cell antigens to induce hemolysis. Patients typically present with symptomatic anemia when the extent of hemolysis overcomes the bone marrow's ability to compensate.
View Article and Find Full Text PDFBr J Haematol
January 2025
Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain.
VEXAS syndrome is a haemato-inflammatory disease caused by somatic UBA1 mutations and characterized by cytoplasmic vacuoles in myeloid and erythroid precursor cells. Although there is currently no standard treatment algorithm for VEXAS, patients are generally treated with anti-inflammatory therapies focused on symptom management, with only partial effectiveness. Hypomethylating agents (HMA) have shown promise in VEXAS patients with concomitant myelodysplastic syndrome (MDS), while the efficacy of HMA in VEXAS patients without MDS is largely unknown.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 666 Buzih Road, Taichung, 40601, Taiwan.
Background: Blood is a vital medical resource that is sourced from primarily nonremunerated donations. As Taiwan faces an aging population, increasing medical demands pose new challenges to blood resource management. Trend analysis can improve blood supply chain management and allocate blood resources more efficiently and cost-effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!