Increasing frequency of extreme climatic events can disrupt ecosystem processes and destabilize ecosystem functioning. Biodiversity may dampen these negative effects of environmental perturbations to provide greater ecosystem stability. We assessed the effects of plant diversity on the resistance, recovery and stability of experimental grassland ecosystems in response to recurring summer drought over 7 yr. Plant biomass production was reduced during the summer drought treatment compared with control plots. However, the negative effect of drought was relatively less pronounced at high than at low plant diversity, demonstrating that biodiversity increased ecosystem resistance to environmental perturbation. Furthermore, more diverse plant communities compensated for the reduced productivity during drought by increasing spring productivity compared to control plots. The drought-induced compensatory recovery led to increased short-term variations in productivity across growing seasons in more diverse communities that stabilized the longer-term productivity across years. Our findings show that short-term variation between seasons in the face of environmental perturbation can lead to longer-term stability of annual productivity in diverse ecosystems compared to less diverse ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2003DOI Listing

Publication Analysis

Top Keywords

plant diversity
12
drought increasing
8
short-term variation
8
summer drought
8
compared control
8
control plots
8
environmental perturbation
8
diverse ecosystems
8
productivity
6
plant
5

Similar Publications

Climate change threatens smallholder agriculture and food security in the Global South. While cropland expansion is often used to counter adverse climate effects despite ecological trade-offs, the benefits for diets and nutrition remain unclear. This study quantitatively examines relationships between climate anomalies, forest loss from cropland expansion, and dietary outcomes in Nigeria, Africa's most populous country.

View Article and Find Full Text PDF

Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.

View Article and Find Full Text PDF

Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.

View Article and Find Full Text PDF

Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!