Collagen has received considerable attention as a biomaterial for tissue engineering because of its low immunogenicity, controllable biodegradation, and ability to influence cell growth and proliferation. Frequently, collagen scaffolds require crosslinking to improve mechanical strength, requiring agents like glutaraldehyde that have high residual cytotoxicity. A novel method for extracting residual glutaraldehyde from crosslinked collagen films with supercritical carbon dioxide (CO ) is presented. CO is a nontoxic, nonflammable substance that is relatively inert and can be used to process biomaterials at mild pressures and physiologic temperatures. In this work, it was first determined that type I collagen is chemically compatible with both liquid and supercritical CO . Treated collagen showed minimal changes in physicochemical properties as determined by differential scanning calorimetry, gel electrophoresis, and circular dichroism. CO was subsequently used to extract residual glutaraldehyde from crosslinked collagen films. Glutaraldehyde concentration was reduced by over 95%, from over 20 ppm before treatment to about 1 ppm, in only 1 h. CO treatment caused negligible alteration of thermal stability but did significantly increase film stiffness and tensile strength. However, these changes were minor compared to heat-based removal of glutaraldehyde. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 86-94, 2018.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.36209 | DOI Listing |
J Dent Sci
January 2025
School of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan.
Background/purpose: The efficacy of riboflavin-ultraviolet-A (RF-UVA) treatment in crosslinking collagen and improving dentin bonding has been proven. However, biodegradation of the hybrid layer may compromise the bonding. The purpose of this study was to evaluate different RF-UVA treatments regarding their ability to preserve dentin bonding from enzymatic digestion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.
This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.
Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran.
Objectives: For designing a suitable hydrogel, two crosslinked Alginate/ Carboxymethyl cellulose (Alg/CMC) hydrogel, using calcium chloride (Ca) and glutaraldehyde (GA) as crosslinking agents were synthesized and compared.
Materials And Methods: All samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Blood compatibility (BC), Blood clotting index (BCI), weight loss (WL), water absorption (WA), pH, and Electrochemical Impedance Spectroscopy (EIS). Cell viability and cell migration were investigated using the MTT assay and the wound scratch test, respectively.
Food Chem
January 2025
Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai-400 019, India. Electronic address:
L-Asparaginase CLEAs were prepared utilizing sodium tripolyphosphate (TPP) as a crosslinker (TA-CLEA). Under optimized conditions (pH 3, 0.3% TPP concentration, and a crosslinking time of 1 h), an 85% activity recovery was achieved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!