Bioinspired Redox-Active Catechol-Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage.

Adv Mater

Department of Chemistry, Centre for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Allée de la Chimie B6A, 4000, Liège, Belgium.

Published: October 2017

Redox-active catechols are bioinspired precursors for ortho-quinones that are characterized by higher discharge potentials than para-quinones, the latter being extensively used as organic cathode materials for lithium ion batteries (LIBs). Here, this study demonstrates that the rational molecular design of copolymers bearing catechol- and Li ion-conducting anionic pendants endow redox-active polymers (RAPs) with ultrarobust electrochemical energy storage features when combined to carbon nanotubes as a flexible, binder-, and metal current collector-free buckypaper electrode. The importance of the structure and functionality of the RAPs on the battery performances in LIBs is discussed. The structure-optimized RAPs can store high-capacities of 360 mA h g at 5C and 320 mA h g at 30C in LIBs. The high ion and electron mobilities within the buckypaper also enable to register 96 mA h g (24% capacity retention) at an extreme C-rate of 600C (6 s for total discharge). Moreover, excellent cyclability is noted with a capacity retention of 98% over 3400 cycles at 30C. The high capacity, superior active-material utilization, ultralong cyclability, and excellent rate performances of RAPs-based electrode clearly rival most of the state-of-the-art Li ion organic cathodes, and opens up new horizons for large-scalable fabrication of electrode materials for ultrarobust Li storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201703373DOI Listing

Publication Analysis

Top Keywords

organic cathodes
8
capacity retention
8
bioinspired redox-active
4
redox-active catechol-bearing
4
catechol-bearing polymers
4
polymers ultrarobust
4
ultrarobust organic
4
cathodes lithium
4
lithium storage
4
storage redox-active
4

Similar Publications

This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).

View Article and Find Full Text PDF

An aqueous zinc-ion battery with an organic-inorganic nanohybrid cathode featuring high operating voltage and long-term stability.

Chem Commun (Camb)

January 2025

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

Cathode materials with both high capacity and high operating voltage are essential for advancing aqueous zinc-ion batteries (ZIBs). Conventional high-capacity materials, such as vanadium-based compounds, typically deliver low discharge voltages. In contrast, organic cathodes show high operating voltages but often exhibit limited capacity.

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!