Renewable high-density spiro-fuels from lignocellulose-derived cyclic ketones.

Chem Commun (Camb)

Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Published: September 2017

Renewable high-density spiro-fuels are synthesized from lignocellulose-derived cyclic ketones for the first time, which show higher density, higher neat heat of combustion and lower freezing point compared with other biofuels synthesized from the same feedstock, and thus represent a new type of renewable high-density fuel attractive for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cc05101hDOI Listing

Publication Analysis

Top Keywords

renewable high-density
12
high-density spiro-fuels
8
lignocellulose-derived cyclic
8
cyclic ketones
8
spiro-fuels lignocellulose-derived
4
ketones renewable
4
spiro-fuels synthesized
4
synthesized lignocellulose-derived
4
ketones time
4
time higher
4

Similar Publications

Glass system of 45BO-20ZnO-30BaO-5X, (where X represents CaO, MgO, AlO, TiO, CuO and FeO) in mole percentage was investigated for gamma ray radiation shielding experimentally. Six glass composites were fabricated and the density was measured experimentally and the BZBCa glass sample has the least density with a value of 3.932 g cm and this is due to the presence of CaO in it, and the sample BZBFe has the highest density with a value of 4.

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Renewable electricity-driven electrochemical reduction of CO offers a promising route for the production of high-value ethanol. However, the current state of this technology is hindered by low selectivity and productivity, primarily due to a limited understanding of the atomic-level active sites involved in ethanol formation. Herein, we identify that the interfacial oxygen vacancy-neighboring Cu (O-Cu) pair sites are the active sites for CO electroreduction to ethanol.

View Article and Find Full Text PDF

Sustainable aviation fuel (SAF) from lignin: Pathways, catalysts, and challenges.

Bioresour Technol

January 2025

College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002 Fujian, China. Electronic address:

The aviation industry plays a crucial role in global trade and cultural exchange, but it faces significant challenges due to high production cost and environmental impacts. To achieve carbon neutrality, promoting the development of sustainable aviation fuel (SAF) is essential, with projections indicating that 65% of emissions reductions in the aviation industry by 2050 will come from the use of SAF. Lignin, as an abundant renewable resource, has great potential for conversion into aviation fuel components.

View Article and Find Full Text PDF

Designing Carbon-Foam Composites via Molten-State Reduction for Multifunctional Electromagnetic Interference Shielding.

ACS Nano

January 2025

NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida 32826, United States.

Advanced electromagnetic interference (EMI) shielding materials are in great demand because of the severe electromagnetic population problem caused by the explosive growth of advanced electronics. Besides superior EMI shielding properties, the mechanical strength of the shielding materials is also critical for some specific application scenarios (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!