Animal navigation requires multiple types of information for decisions on directional heading. We identified neural processing channels that encode multiple cues during navigational decision-making in Drosophila melanogaster. In a flight simulator, we found that flies made directional choices on the basis of the location of a recently presented landmark. This experience-guided navigation was impaired by silencing neurons in the bulb (BU), a region in the central brain. Two-photon calcium imaging during flight revealed that the dorsal part of the BU encodes the location of a recent landmark, whereas the ventral part of the BU tracks self-motion reflecting turns. Photolabeling-based circuit tracing indicated that these functional compartments of the BU constitute adjacent, yet distinct, anatomical pathways that both enter the navigation center. Thus, the fly's navigation system organizes multiple types of information in parallel channels, which may compactly transmit signals without interference for decision-making during flight.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn.4628DOI Listing

Publication Analysis

Top Keywords

multiple types
8
navigation
5
parallel encoding
4
encoding visual
4
visual experience
4
experience self-motion
4
self-motion navigation
4
navigation drosophila
4
drosophila animal
4
animal navigation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!