Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615543 | PMC |
http://dx.doi.org/10.3390/ijerph14091006 | DOI Listing |
Nature
January 2025
School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
Tissue-resident memory CD8 T (T) cells provide protection from infection at barrier sites. In the small intestine, T cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential. However, the origins of this diversity remain unknown.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore. Electronic address:
The combination of chemotherapy and gene therapy holds promise in treating cancer. A key strategy is to use small interfering RNAs (siRNAs) to silence programmed death-ligand 1 (PD-L1) expression in cancer cells, disrupting tumor immune evasion and enhancing anticancer treatments, particularly when used in conjunction with chemotherapy drugs such as doxorubicin (Dox). However, effective codelivery of drugs and genes requires carefully designed carriers and complex synthesis procedures.
View Article and Find Full Text PDFInt J Parasitol
January 2025
The helminth Trichinella spiralis, through its excretory-secretory (ES L1) products, induces immune regulatory mechanisms that modulate the host's immune response not only to itself, but also to bystander antigens, foreign or self in origin, which can result in the alleviation of inflammatory diseases. Under the influence of ES L1, dendritic cells (DCs) acquire a tolerogenic phenotype and the capacity to induce Th2 and regulatory responses. Since ES L1 products represent a complex mixture of proteins and extracellular vesicles (TsEVs) the aim of this study was to investigate the impact of TsEVs, isolated from ES L1 products, on phenotypic and functional characteristics of DCs and to elucidate whether TsEVs could reproduce the immunomodulatory effects of the complete ES L1 product.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: Colorectal neuroendocrine tumors with liver metastases (CRNELM) are associated with a poorer prognosis compared to their nonmetastatic counterparts. A comprehensive understanding of the tumor microenvironment (TME) heterogeneity between primary lesions (PL) and liver metastases (LM) could provide crucial insights for enhancing clinical management strategies for these patients.
Methods: We utilized single-cell RNA sequencing to analyze fresh tissue samples from CRNELM patients, aiming to elucidate the variations in TME between PL and LM.
Adv Sci (Weinh)
January 2025
Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO, 63110, USA.
Glioblastoma (GBM) is an aggressive form of brain cancer that is highly resistant to therapy due to significant intra-tumoral heterogeneity. The lack of robust in vitro models to study early tumor progression has hindered the development of effective therapies. Here, this study develops engineered GBM organoids (eGBOs) harboring GBM subtype-specific oncogenic mutations to investigate the underlying transcriptional regulation of tumor progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!