Evaluating the Use of Cleft Lip and Palate 3D-Printed Models as a Teaching Aid.

J Surg Educ

UCL Division of Surgery & Interventional Science, Centre for Nanotechnology & Regenerative Medicine, University College London, London, United Kingdom; Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, United Kingdom; Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom.

Published: November 2018

AI Article Synopsis

  • 3D-printed models significantly enhance understanding in medical education, particularly for complex topics like cleft lip and palate.
  • The study involved 67 medical students divided into two groups: one receiving traditional PowerPoint presentations and the other supplemented with hands-on 3D model demonstrations.
  • Results showed the test group had a greater knowledge gain (44.65%) compared to the control group (32.16%), and students reported a more positive learning experience with the 3D models.

Article Abstract

Objective: Visualization tools are essential for effective medical education, to aid students understanding of complex anatomical systems. Three dimensional (3D) printed models are showing a wide-reaching potential in the field of medical education, to aid the interpretation of 2D imaging. This study investigates the use of 3D-printed models in educational seminars on cleft lip and palate, by comparing integrated "hands-on" student seminars, with 2D presentation seminar methods.

Setting: Cleft lip and palate models were manufactured using 3D-printing technology at the medical school.

Participants: Sixty-seven students from two medical schools participated in the study.

Design: The students were randomly allocated to 2 groups. Knowledge was compared between the groups using a multiple-choice question test before and after the teaching intervention. Group 1 was the control group with a PowerPoint presentation-based educational seminar and group 2 was the test group, with the same PowerPoint presentation, but with the addition of a physical demonstration using 3D-printed models of unilateral and bilateral cleft lips and palate.

Results: The level of knowledge gained was established using a preseminar and postseminar assessment, in 2 different institutions, where the addition of the 3D-printed model resulted in a significant improvement in the mean percentage of knowledge gained (44.65% test group; 32.16%; control group; p = 0.038). Student experience was assessed using a postseminar survey, where students felt the 3D-printed model significantly improved the learning experience (p = 0.005) and their visualization (p = 0.001).

Conclusions: This study highlights the benefits of the use of 3D-printed models as visualization tools in medical education and the potential of 3D-printing technology to become a standard and effective tool in the interpretation of 2D imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsurg.2017.07.023DOI Listing

Publication Analysis

Top Keywords

3d-printed models
16
cleft lip
12
lip palate
12
medical education
12
visualization tools
8
education aid
8
interpretation imaging
8
3d-printing technology
8
control group
8
group powerpoint
8

Similar Publications

A randomized cohort study on the use of 3D printed models to enhance surgical training in suturing techniques.

Sci Rep

January 2025

General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.

Three-dimensional (3D) printed surgical models provide an excellent surgical training option to closely mimic real operations to teach medical students who currently rely largely on visual learning aided with simple suturing pads. There is an unmet need to create simple to complex surgical training programs suitable for medical students. A prospective cohort study was conducted on a group of 16 6th year students.

View Article and Find Full Text PDF

Light-curing of restorative composite through milled and 3D-printed full-contour zirconia for adhesive luting.

Dent Mater

January 2025

KU Leuven, Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, Kapucijnenvoer 7, 3000 Leuven, Belgium. Electronic address:

Objectives: To evaluate the effect of different zirconia compositions and manufacturing processes on the light irradiance (LI), to measure the degree of conversion (DC) of solely light-curing restorative composite underneath these zirconia grades and to evaluate the respective zirconia microstructures.

Methods: Six dental zirconia grades (GC HT, GC UHT [GC]; Katana HT, Katana UTML [Kuraray Noritake]; Lava Esthetic, Lava Plus [3 M Oral Care]) were cut and sintered per manufacturer instructions. One 3D-printed zirconia grade (XJet [XJET]) was prepared according to previous research.

View Article and Find Full Text PDF

3D printed edible electronics: Components, fabrication approaches and applications.

Biosens Bioelectron

December 2024

Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India. Electronic address:

A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases.

View Article and Find Full Text PDF

Digital technologies, such as virtual and augmented reality (VR and AR) are mainly used in the preclinical and clinical phases in neurosurgery and orthopedics. In contrast, they are used less frequently in visceral surgery as the intraoperative deformation is challenging for the clinical use. The application of VR is used successfully particularly in education and training.

View Article and Find Full Text PDF

Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers.

Nat Commun

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!