New insight into the fouling behavior of hydrophobic and hydrophilic polypropylene membranes in integrated membrane bioreactors.

Environ Technol

b School of Environmental and Chemical Engineering , Tianjin Polytechnic University, Tianjin , People's Republic of China.

Published: December 2018

To investigate the effect of hydrophobic and hydrophilic polypropylene hollow fiber membranes (PPHFMs) applied in membrane bioreactors (MBR), the fouling behaviors of membrane surfaces and pores have been tested. The structural and morphological features on the membrane surface were characterized using attenuated total reflection-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscope, energy dispersive X-ray spectroscopy and laser granularity distribution analysis. The results showed that significantly more polysaccharide, protein and inorganic ingredients were accumulated in the original membrane compared to the hydrophilic membrane. Furthermore, it was found that the pore size influenced the particle distribution and accumulation, such that smaller pore size membranes tended to contain fewer pollutants and a narrow size distribution. Under a constant flux of 11.5 L/m h, the transmembrane pressure (TMP) varied narrowly between 38 and 53 KPa. Alongside this, a relatively hydrophilic membrane (PP-g-AA) showed the characteristics of lower TMP in comparison to hydrophobic membranes (PP). Indeed, the flux recovery was 30% higher than those of the original PPHFM. This investigation broadens our understanding of membrane modifying and fouling behavior in integrated MBRs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2017.1375023DOI Listing

Publication Analysis

Top Keywords

fouling behavior
8
hydrophobic hydrophilic
8
hydrophilic polypropylene
8
membrane
8
membrane bioreactors
8
hydrophilic membrane
8
pore size
8
insight fouling
4
behavior hydrophobic
4
hydrophilic
4

Similar Publications

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Lubricant-mediated surfaces face challenges like lubricant loss and poor clarity for antifouling purposes.
  • Inspired by globefish skin, slippery Liquid-Like Surfaces (LLSs) use cyclodextrin-eugenol complexes and flexible silicone chains to effectively kill attached organisms and prevent fouling.
  • LLSs show excellent antifouling and mechanical properties while maintaining transparency in various water environments, lasting up to 90 days on coated lenses in seawater.
View Article and Find Full Text PDF

Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture.

Bioprocess Biosyst Eng

January 2025

Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.

Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.

View Article and Find Full Text PDF

The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.

View Article and Find Full Text PDF

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!