To investigate the effect of hydrophobic and hydrophilic polypropylene hollow fiber membranes (PPHFMs) applied in membrane bioreactors (MBR), the fouling behaviors of membrane surfaces and pores have been tested. The structural and morphological features on the membrane surface were characterized using attenuated total reflection-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, atomic force microscope, energy dispersive X-ray spectroscopy and laser granularity distribution analysis. The results showed that significantly more polysaccharide, protein and inorganic ingredients were accumulated in the original membrane compared to the hydrophilic membrane. Furthermore, it was found that the pore size influenced the particle distribution and accumulation, such that smaller pore size membranes tended to contain fewer pollutants and a narrow size distribution. Under a constant flux of 11.5 L/m h, the transmembrane pressure (TMP) varied narrowly between 38 and 53 KPa. Alongside this, a relatively hydrophilic membrane (PP-g-AA) showed the characteristics of lower TMP in comparison to hydrophobic membranes (PP). Indeed, the flux recovery was 30% higher than those of the original PPHFM. This investigation broadens our understanding of membrane modifying and fouling behavior in integrated MBRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2017.1375023 | DOI Listing |
Polymers (Basel)
December 2024
Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey.
In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.
View Article and Find Full Text PDFSmall
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
Bioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Engineering, Università degli Studi di Palermo, 90128 Palermo, Italy.
The valorization of ultra-concentrated seawater brines, named bitterns, requires preliminary purification processes, such as membrane filtration, before they can be fully exploited. This study investigates the performance of an ultrafiltration pilot plant aimed at separating organic matter and large particles from real bitterns. An empirical model for the bittern viscosity was developed to better characterize the membrane.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!