Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two well-known centrifugal and axial pumping principles are used simultaneously in a new blood pump design. Inside the pump housing is a spiral impeller, a conically shaped structure with threads on the surface. The worm gears provide an axial motion of the blood column through the threads of the central cone. The rotational motion of the conical shape generates the centrifugal pumping effect and improves the efficiency of the pump without increasing hemolysis. The hydrodynamic performance of the pump was examined with a 40% glycerin-water solution at several rotation speeds. The gap between the housing and the top of the thread is a very important factor: when the gap increases, the hydrodynamic performance decreases. To determine the optimum gap, several in vitro hemolysis tests were performed with different gaps using bovine blood in a closed circuit loop under two conditions. The first simulated condition was a left ventricular assist device (LVAD) with a flow rate of 5 L/min against a pressure head of 100 mm Hg, and the second was a cardiopulmonary bypass (CPB) simulation with a flow rate of 5 L/min against 350 mm Hg of pressure. The best hemolysis results were seen at a gap of 1.5 mm with the normalized index of hemolysis (NIH) of 0.0063 ± 0.0020 g/100 L and 0.0251 ± 0.0124 g/100 L (mean ± SD; n = 4) for LVAD and CPB conditions, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-1594.1996.tb04489.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!