Controller for an Axial Flow Blood Pump.

Artif Organs

University of Pittsburgh, Artificial. Heart and Lung Program, Schools of Medicine, Pittsburgh, PennsylvaniaUniversity of Pittsburgh, Artificial. Heart and Lung Program, Schools of Engineering, Pittsburgh, PennsylvaniaNimbus, Inc., Rancho Cordova, California, U.S.A.

Published: May 1996

A rotary blood pump inherently provides only one noninvasive "observable'" parameter (motor current) and allows for only one "controllable" parameter (pump speed). To maintain the systemic circulation properly, the pump speed must be controlled to sustain appropriate outlet Hows and perfusion pressure while preventing pulmonary damage caused by extremes in preload. Steady-state data were collected at repeated intervals during chronic trials of the Nimbus AxiPump (Nimbus, Inc., Rancho Cordova, California, U.S.A.) in sheep (n = 7) and calves (n = 12). For each data set, the pump speed was increased at increments of 500 rpm until left ventricular and left atrial emptying was observed by left atrial pressure diminishing to zero. The effect of decreasing preload was evaluated perioperatively by inferior vena cava occlusion at a constant pump speed. Fourier analysis established a relationship between changes in the pump preload and the power spectra of the pump current waveform. Based on these results, a control method was devised to avoid ventricular collapse and maintain the preload within a physiologic range. The objective of this controller is the minimization of the second and third harmonic of the periodic current waveform. This method is intended to provide a noninvasive regulation of the pump by eliminating the need for extraneous transducers.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.1996.tb04491.xDOI Listing

Publication Analysis

Top Keywords

pump speed
16
pump
9
blood pump
8
left atrial
8
current waveform
8
controller axial
4
axial flow
4
flow blood
4
pump rotary
4
rotary blood
4

Similar Publications

Ultrafast Thermal Switching Enabled by Transient Polaritons.

ACS Nano

December 2024

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.

View Article and Find Full Text PDF

FDA recommends monitoring differential pressure across filter membranes during sterile filtration process validation. However, few resources are available to help pharmaceutical manufacturers anticipate expected differential pressures during sterilizing filtration of different solutions. To address this gap, Meissner evaluated differential pressures across different filtration membranes using various test solutions at increasing pump speeds.

View Article and Find Full Text PDF

Background: Cell concentration in body fluid is an important factor for clinical diagnosis. The traditional method involves clinicians manually counting cells under microscopes, which is labor-intensive. Automated cell concentration estimation can be achieved using flow cytometers; however, their high cost limits accessibility.

View Article and Find Full Text PDF

Background: The study assesses the feasibility of the DuoCor BiVAS, a novel biventricular assist system integrating magnetic levitation technology.

Methods: In an acute large animal model involving five sheep, each received the DuoCor BiVAS without cardiopulmonary bypass. Hemodynamic and device parameters were monitored continuously for 1-h post-implantation.

View Article and Find Full Text PDF

Optical logic gates based on nonlinear optical property of material with ultrafast response speed and excellent computational processing power can break the performance bottleneck of electronic transistors. As one of the layered 2D materials, TaNiS exhibits high anisotropic mobility, exotic electrical response, and intriguing optical properties. Due to the low-symmetrical crystal structures, it possesses in-plane anisotropic physical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!