Enhancement of the photocatalytic activity of rhenium(i) complexes by encapsulation in light-harvesting soft nanotubes.

Chem Commun (Camb)

Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Published: September 2017

Dye-assembled soft nanotubes with controlled-diameter nanochannels functioned as light-harvesting antennae to strongly enhance the photocatalytic activity of Re(i) complexes encapsulated in their nanochannels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cc05337aDOI Listing

Publication Analysis

Top Keywords

photocatalytic activity
8
soft nanotubes
8
enhancement photocatalytic
4
activity rheniumi
4
rheniumi complexes
4
complexes encapsulation
4
encapsulation light-harvesting
4
light-harvesting soft
4
nanotubes dye-assembled
4
dye-assembled soft
4

Similar Publications

Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.

View Article and Find Full Text PDF

1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO Photoreduction.

Macromol Rapid Commun

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.

Diatomic catalysts enhance photocatalytic CO reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO photoreduction.

View Article and Find Full Text PDF

Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!