Notwithstanding remarkable progress in vascular network engineering, implanted bioengineered microvessels largely fail to form anastomoses with the host vasculature. Here, we demonstrate that implants containing assembled human vascular networks (A-Grafts) fail to engraft due to their inability to engage non-inflammatory host neutrophils upon implantation into mice. In contrast, unassembled vascular cells (U-Grafts) readily engage alternatively polarized neutrophils, which in turn serve as indispensable mediators of vascular assembly and anastomosis. The depletion of host neutrophils abrogated vascularization in U-Grafts, whereas an adoptive transfer of neutrophils fully restored vascularization in myeloid-depleted mice. Neutrophil engagement was regulated by secreted factors and was progressively silenced as the vasculature matured. Exogenous addition of factors from U-Grafts reengaged neutrophils and enhanced revascularization in A-Grafts, a process that was recapitulated by blocking Notch signaling. Our data suggest that the pro-vascularization potential of neutrophils can be harnessed to improve the engraftment of bioengineered tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578427PMC
http://dx.doi.org/10.1038/s41551-017-0081DOI Listing

Publication Analysis

Top Keywords

engraftment bioengineered
8
vascular networks
8
host neutrophils
8
neutrophils
7
vascular
5
host
4
host non-inflammatory
4
non-inflammatory neutrophils
4
neutrophils mediate
4
mediate engraftment
4

Similar Publications

Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells.

Cell Rep

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia.

View Article and Find Full Text PDF

Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization.

Cell Host Microbe

December 2024

The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St Louis, St. Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C.

View Article and Find Full Text PDF

Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse.

J Cachexia Sarcopenia Muscle

February 2025

Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.

Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.

Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.

View Article and Find Full Text PDF

Background: Intraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets.

View Article and Find Full Text PDF

F-FLT PET and Blood-based Biomarkers for Identifying Gastrointestinal Graft versus Host Disease after Allogeneic Cell Transplantation.

Radiol Imaging Cancer

January 2025

From the Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE 10th St, Oklahoma City, OK 73104 (J.H.C., L.M., S.K.V., Z.H., M.P., J.G., Y.W.); Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY (J.L., J.F.); Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma, Oklahoma City, Okla (S.K.V., T.G.); Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Md (C.G.K., R.G.); Department of Biomedical Engineering, University of Central Oklahoma, Edmond, Okla (Z.H.); and Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA (K.M.W.).

Purpose To determine whether fluorine 18 (F) fluorothymidine (FLT) PET imaging alone or combined with Mount Sinai Acute GVHD International Consortium (MAGIC) biomarkers could help identify subclinical gastrointestinal graft versus host disease (GI-GVHD) by day 100 following hematopoietic stem cell transplantation (HSCT). Materials and Methods F-FLT PET imaging was analyzed in a prospective pilot study (ClinicalTrials.gov identifier no.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!