AI Article Synopsis

  • Meibomian gland dysfunction (MGD) is a primary cause of dry eye affecting about 4% of people, but current treatment options are limited.
  • Topical azithromycin has potential as a treatment due to its multiple action mechanisms, yet its effectiveness on meibomian glands remains unclear due to lack of pharmacokinetic studies.
  • Research showed that after applying a 1% azithromycin solution, its concentration in meibomian glands was very low (0.8 µg/g tissue), indicating it primarily accumulates in other ocular tissues, highlighting a need for better-targeted therapies.

Article Abstract

Meibomian gland dysfunction (MGD) is the leading cause of dry eye, and although it affects approximately 4% of the population, treatment options remain limited. Topical azithromycin is one of the most promising pharmacological agents because of its multiple mechanisms of action and long sustainability. Azithromycin is frequently used as an off-label medication in the U.S. However, although azithromycin is presumed to act directly on meibomian gland cells, the mechanisms of action that contribute to its clinical efficacy remain unclear because no studies using a pharmacokinetic approach have been performed. Therefore, we aimed to clarify whether topical azithromycin reaches the meibomian glands sufficiently to generate a biological effect. We measured azithromycin concentrations in rabbit meibomian glands collected using a recently developed method. Moreover, we also visualized the azithromycin micro-distribution using desorption electrospray ionization (DESI) imaging. Azithromycin concentration in the meibomian glands reached only 0.8 µg/g tissue following a single application of a 1% azithromycin ophthalmic solution and was 1000-fold lower than the concentration in conjunctival epithelium. Similarly, no signal was observed in the meibomian glands on DESI images. Our results clearly demonstrated that topical azithromycin had limited access to the meibomian glands and was predominantly distributed in ocular surface tissues such as the palpebral conjunctiva and lid margins. These findings provide new insight into the clinical responses to topical azithromycin therapy and will aid in the further development of effective drugs with more suitable pharmacokinetic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b17-00288DOI Listing

Publication Analysis

Top Keywords

meibomian glands
24
topical azithromycin
16
azithromycin
10
meibomian
8
rabbit meibomian
8
desi imaging
8
meibomian gland
8
mechanisms action
8
glands
6
limited azithromycin
4

Similar Publications

Purpose: To compare the meibographies and dry eye parameters of paretic vs non-paretic sides of patients with a facial palsy diagnosis.

Patients And Methods: Twenty patients with unilateral facial palsy were recruited and the severity of the disease was staged using the House-Brackmann scale. A comprehensive dry eye evaluation was performed using the Oculus 5M Keratograph.

View Article and Find Full Text PDF

Purpose: Reliable assessment is critical for diagnosing and managing meibomian gland dysfunction. Multi-functional diagnostic devices, such as meibographers, streamline clinical workflows by integrating multiple ocular assessments. Ensuring reproducibility across examiners is vital for accurate diagnosis and monitoring of treatment.

View Article and Find Full Text PDF

To develop an atrophic Meibomian Gland Dysfunction (MGD) animal model via liquid nitrogen cryotherapy, the eyelid edges of C57 mice exposure to liquid nitrogen for 30 s. Morphology of MG and ocular surface were assessed using stereomicroscopy and a slit lamp microscope at multiple time points post-injury. Acinar loss and atrophy were observed from day 7, with increased inflammation and apoptosis, and decreased proliferation in acinar cells.

View Article and Find Full Text PDF

In vivo confocal microscopy (IVCM) is a non-invasive imaging technique used to visualize the layers of the cornea and conjunctiva in real time. In patients with atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC), this technology can be useful in diagnosing and monitoring the disease, as well as evaluating the efficacy of treatments. IVCM can reveal subclinical abnormalities in the corneal and conjunctival epithelium such as inflammatory cell infiltrates and tissue damage, which can provide insight into the pathogenesis of AKC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!