Comparison of the efficiency of different newcastle disease virus reverse genetics systems.

J Virol Methods

CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; INRA, UMR1309 ASTRE, F-34398 Montpellier, France. Electronic address:

Published: November 2017

Rescue of negative-sense single-stranded RNA viruses ((-)ssRNA virus), generally requires the handling of a large number of plasmids to provide the virus genome and essential components for gene expression and genome replication. This constraint probably renders reverse genetics of (-)ssRNA virus more complex and less efficient. Some authors have shown that the fewer the plasmids, the more efficient reverse genetics is for segmented RNA virus. However, it is not clear if the same applies for (-)ssRNA, such as Newcastle disease virus (NDV). To address this issue, six variants of NDV reverse genetic systems were established by cloning combinations of NP, P and L genes, mini-genome or full-genome in 4, 3, 2 and 1 plasmid. In terms of mini-genome and full-genome rescue, we showed that only the 2-plasmid system, assembling three support plasmids together, was able to improve the rescue efficiency over that of the conventional 4-plasmid system. These results may help establish and/or improve reverse genetics for other mononegaviruses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2017.08.024DOI Listing

Publication Analysis

Top Keywords

reverse genetics
16
newcastle disease
8
disease virus
8
-ssrna virus
8
mini-genome full-genome
8
virus
6
reverse
5
comparison efficiency
4
efficiency newcastle
4
virus reverse
4

Similar Publications

Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.

View Article and Find Full Text PDF

The genus , a group of ciliated protists, has attracted attention as a model organism due to its widespread distribution and ease of cultivation. This study examines the evolutionary patterns of the SSU rRNA secondary structure within this genus, aiming to elucidate its role in supporting evolutionary relationships and uncovering cryptic species. By predicting the secondary structure of SSU rRNA and applying the CBC (Compensatory Base Change) concept analysis, we examined 69 species of the genus , with 57 SSU rRNA gene sequences retrieved from GenBank and 12 newly sequenced specimens from South Korea.

View Article and Find Full Text PDF

The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.

View Article and Find Full Text PDF

While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq.

View Article and Find Full Text PDF

Introduction: POT1 tumor predisposition (POT1-TPD) is an autosomal dominant disorder characterized by increased lifetime malignancy risk. Melanoma, angiosarcoma, and chronic lymphocytic leukemia are the most frequently reported malignancies [1]. Protection of telomeres protein 1 (POT1) is part of the shelterin protein complex to maintain/protect telomeres [2].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!