Eleven loci with prior evidence for association with reading and language phenotypes were sequenced in 96 unrelated subjects with significant impairment in reading performance drawn from the Colorado Learning Disability Research Center collection. Out of 148 total individual missense variants identified, the chromosome 7 genes CCDC136 and FLNC contained 19. In addition, a region corresponding to the well-known DYX2 locus for RD contained 74 missense variants. Both allele sets were filtered for a minor allele frequency ≤0.01 and high Polyphen-2 scores. To determine if observations of these alleles are occurring more frequently in our cases than expected by chance in aggregate, counts from our sample were compared to the number of observations in the European subset of the 1000 Genomes Project using Fisher's exact test. Significant P values were achieved for both CCDC136/FLNC (P = 0.0098) and the DYX2 locus (P = 0.012). Taken together, this evidence further supports the influence of these regions on reading performance. These results also support the influence of rare variants in reading disability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702371PMC
http://dx.doi.org/10.1007/s00439-017-1838-zDOI Listing

Publication Analysis

Top Keywords

dyx2 locus
12
rare variants
8
genes ccdc136
8
ccdc136 flnc
8
reading performance
8
missense variants
8
enrichment putatively
4
putatively damaging
4
damaging rare
4
variants
4

Similar Publications

Dyslexia, also known as reading disability, is defined as difficulty processing written language in individuals with normal intellectual capacity and educational opportunity. The prevalence of dyslexia is between 5 and 17%, and the heritability ranges from 44 to 75%. Genetic linkage analysis and association studies have identified several genes and regulatory elements linked to dyslexia and reading ability.

View Article and Find Full Text PDF

Eleven loci with prior evidence for association with reading and language phenotypes were sequenced in 96 unrelated subjects with significant impairment in reading performance drawn from the Colorado Learning Disability Research Center collection. Out of 148 total individual missense variants identified, the chromosome 7 genes CCDC136 and FLNC contained 19. In addition, a region corresponding to the well-known DYX2 locus for RD contained 74 missense variants.

View Article and Find Full Text PDF

Opposite Associations between Individual KIAA0319 Polymorphisms and Developmental Dyslexia Risk across Populations: A Stratified Meta-Analysis by the Study Population.

Sci Rep

July 2016

Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

KIAA0319 at the DYX2 locus is one of the most extensively studied candidate genes for developmental dyslexia (DD) owing to its important role in neuronal migration. Previous research on associations between KIAA0319 genetic variations and DD has yielded inconsistent results. It is important to establish a more precise estimate of the DD risk associated with these genetic variations.

View Article and Find Full Text PDF

Dyslexia and language impairment (LI) are complex traits with substantial genetic components. We recently completed an association scan of the DYX2 locus, where we observed associations of markers in DCDC2, KIAA0319, ACOT13, and FAM65B with reading-, language-, and IQ-related traits. Additionally, the effects of reading-associated DYX3 markers were recently characterized using structural neuroimaging techniques.

View Article and Find Full Text PDF

A major milestone of child development is the acquisition and use of speech and language. Communication disorders, including speech sound disorder (SSD), can impair a child's academic, social and behavioral development. Speech sound disorder is a complex, polygenic trait with a substantial genetic component.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!