Skeleton-Based Scagnostics.

IEEE Trans Vis Comput Graph

Published: January 2018

Scatterplot matrices (SPLOMs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics) approaches measure characteristics of scatterplots to automatically find potentially interesting plots, thereby making SPLOMs more scalable with the dimension count. While statistical measures such as regression lines can capture orientation, and graph-theoretic scagnostics measures can capture shape, there is no scatterplot characterization measure that uses both descriptors. Based on well-known results in shape analysis, we propose a scagnostics approach that captures both scatterplot shape and orientation using skeletons (or medial axes). Our representation can handle complex spatial distributions, helps discovery of principal trends in a multiscale way, scales visually well with the number of samples, is robust to noise, and is automatic and fast to compute. We define skeleton-based similarity metrics for the visual exploration and analysis of SPLOMs. We perform a user study to measure the human perception of scatterplot similarity and compare the outcome to our results as well as to graph-based scagnostics and other visual quality metrics. Our skeleton-based metrics outperform previously defined measures both in terms of closeness to perceptually-based similarity and computation time efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2017.2744339DOI Listing

Publication Analysis

Top Keywords

scatterplot
5
skeleton-based scagnostics
4
scagnostics scatterplot
4
scatterplot matrices
4
matrices sploms
4
sploms exploring
4
exploring multidimensional
4
multidimensional data
4
data scatterplot
4
scatterplot diagnostics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!