This system paper presents the Topology ToolKit (TTK), a software platform designed for the topological analysis of scalar data in scientific visualization. While topological data analysis has gained in popularity over the last two decades, it has not yet been widely adopted as a standard data analysis tool for end users or developers. TTK aims at addressing this problem by providing a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependency-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website [108].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2017.2743938 | DOI Listing |
G3 (Bethesda)
November 2024
Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA.
Ubiquitin controls many cellular processes via its posttranslational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin chains with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation.
View Article and Find Full Text PDFMacromolecules
June 2024
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.
Topology significantly impacts polymer properties and applications. Hyperbranched polymers (HBPs) synthesized via atom transfer radical polymerization (ATRP) using inimers typically exhibit broad molecular weight distributions and limited control over branching. Alternatively, copolymerization of inibramers (IB), such as α-chloro/bromo acrylates with vinyl monomers, yields HBPs with precise and uniform branching.
View Article and Find Full Text PDFPlant Methods
June 2024
Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
PIN proteins establish the auxin concentration gradient, which coordinates plant growth. PIN1-4 and 7 localized at the plasma membrane (PM) and facilitate polar auxin transport while the endoplasmic reticulum (ER) localized PIN5 and PIN8 maintain the intracellular auxin homeostasis. Although an antagonistic activity of PIN5 and PIN8 proteins in regulating the intracellular auxin homeostasis and other developmental events have been reported, the membrane topology of these proteins, which might be a basis for their antagonistic function, is poorly understood.
View Article and Find Full Text PDFUbiquitin controls many cellular processes via its post-translational conjugation onto substrates. Its use is highly variable due to its ability to form poly-ubiquitin with various topologies. Among them, linear chains have emerged as important regulators of immune responses and protein degradation.
View Article and Find Full Text PDFUnlabelled: The abundant discordance between evolutionary relationships across the genome has rekindled interest in ways of comparing and averaging trees on a shared leaf set. However, most attempts at reconciling trees have focused on tree topology, producing metrics for comparing topologies and methods for computing median tree topologies. Using branch lengths, however, has been more elusive, due to several challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!